679 research outputs found

    Experimental determination of unsteady blade element aerodynamics in cascades. Volume 2: Translation mode cascade

    Get PDF
    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated

    Highly Ionised Gas as a Diagnostic of the Inner NLR

    Full text link
    The spectra of AGN from the ultraviolet to the near infrared, exhibit emission lines covering a wide range of ionisation states, from neutral species such as [O I] 6300A, up to [Fe XIV] 5303A. Here we report on some recent studies of the properties of highly ionised lines (HILs), plus two case studies of individual objects. Future IFU observations at high spatial and good spectral resolution, will probe the excitation and kinematics of the gas in the zone between the extended NLR and unresolved BLR. Multi-component SED fitting can be used to link the source of photoionisation with the strengths and ratios of the HILs.Comment: Proceedings of the IAU Symposium: Co-evolution of Central Black Holes and Galaxie

    PROFIT: a new alternative for emission-line PROfile FITting

    Full text link
    I briefly describe a simple routine for emission-line profiles fitting by Gaussian curves or Gauss-Hermite series. The PROFIT (line-PROfile FITting) routine represent a new alternative for use in fits data cubes, as those from Integral Field Spectroscopy or Fabry-Perot Interferometry, and may be useful to better study the emission-line flux distributions and gas kinematics in distinct astrophysical objects, such as the central regions of galaxies and star forming regions. The PROFIT routine is written in IDL language and is available at http://www.ufsm.br/rogemar/software.html. The PROFIT routine was used to fit the [Fe II]1.257um emission-line profiles for about 1800 spectra of the inner 350 pc of the Seyfert galaxy Mrk1066 obtained with Gemini NIFS and shows that the line profiles are better reproduced by Gauss-Hermite series than by the commonly used Gaussian curves. The two-dimensional map of the h_3 Gauss-Hermite moment shows its highest absolute values in regions close to the edge of the radio structure. These high values may be originated in an biconical outflowing gas associated with the radio jet - previously observed in the optical [O III] emission. The analysis of this kinematic component indicates that the radio jet leaves the center of the galaxy with the north-west side slightly oriented towards us and the south-east side away from us, being partially hidden by the disc of the galaxy.Comment: Accepted for publication Astrophysics & Space Science - 7 pges; 4 Fig

    Near-IR dust and line emission from the central region of Mrk1066: Constraints from Gemini NIFS

    Full text link
    We present integral field spectroscopy of the inner 350 pc of the Mrk1066 obtained with Gemini NIFS at a spatial resolution of 35 pc. This high spatial resolution allowed us to observe, for the first time in this galaxy, an unresolved dust concentration with mass 0.014 M_Sun, which may be part of the dusty torus. The emission-line fluxes are elongated in PA=135/315deg in agreement with the [OIII] and radio images and, except for the H lines, are brighter to the north-west than to the south-east. The H emission is stronger to the south-east, where we find a large region of star-formation. The strong correlation between the radio emission and the highest emission-line fluxes indicates that the radio jet plays a fundamental role at these intensity levels. The H2 flux is more uniformly distributed and has an excitation temperature of 2100 K. Its origin appears to be circumnuclear gas heated by X-rays from the AGN. The [FeII] emission also is consistent with X-ray heating, but with additional emission due to excitation by shocks in the radio jet. The coronal-line emission of [CaVIII] and [SIX] are unresolved by our observations indicating a distribution within 18pc from the nucleus. The reddening ranges from E(B-V) ~ 0 to E(B-V) ~ 1.7 with the highest values defining a S-shaped structure along PA ~ 135/315deg. The emission-line ratios are Seyfert-like within the ionization cone indicating that the line emission is powered by the central active nucleus in these locations. Low ionization regions are observed away from the ionization cone, and may be powered by the diffuse radiation field which filters through the ionization cone walls. Two regions at 0.5 arcsec south-east and at 1 arcsec north-west of the nucleus show starburst-like line ratios, attributed to additional emission from star forming regions.Comment: 14 pages, 10 figures, accepted for publication in MNRA

    Disentangling the near infrared continuum spectral components of the inner 500 pc of Mrk 573: two-dimensional maps

    Get PDF
    We present a near infrared study of the spectral components of the continuum in the inner 500×\times500 pc2^2 of the nearby Seyfert galaxy Mrk573 using adaptive optics near-infrared integral field spectroscopy with the instrument NIFS of the Gemini North Telescope at a spatial resolution of \sim50 pc. We performed spectral synthesis using the {\sc starlight} code and constructed maps for the contributions of different age components of the stellar population: young (age100age\leq100 Myr), young-intermediate (100<age700100<age\leq700 Myr), intermediate-old (700700 Myr 22 Gyr) to the near-IR K-band continuum, as well as their contribution to the total stellar mass. We found that the old stellar population is dominant within the inner 250 pc, while the intermediate age components dominate the continuum at larger distances. A young stellar component contributes up to \sim20% within the inner \sim70 pc, while hot dust emission and featureless continuum components are also necessary to fit the nuclear spectrum, contributing up to 20% of the K-band flux there. The radial distribution of the different age components in the inner kiloparsec of Mrk573 is similar to those obtained by our group for the Seyfert galaxies Mrk1066, Mrk1157 and NGC1068 in previous works using a similar methodology. Young stellar populations (\leq100 Myr) are seen in the inner 200-300 pc for all galaxies contributing with \ge20% of the K-band flux, while the near-IR continuum is dominated by the contribution of intermediate-age stars (t=t=100 Myr-2 Gyr) at larger distances. Older stellar populations dominate in the inner 250 pc

    Optical and mid-infrared neon abundance determinations in star-forming regions

    Get PDF
    We employed observational spectroscopic data of star-forming regions compiled from the literature and photoionization models to analyse the neon ionic abundances obtained using both optical and mid-infrared emission-lines. Comparing Ne++/H+ ionic abundances from distinct methods, we found that, in average, the abundances obtained via IR emission-lines are higher than those obtained via optical lines by a factor of 4. Photoionization models with abundance variations along the radius of the hypothetical nebula provide a possible explanation for a large part of the difference between ionic abundances via optical and infrared emission-lines. Ionization Correction Factor (ICF) for the neon is obtained from direct determinations of ionic fractions using infrared emission-lines. A constant Ne/O ratio (logNe/O \approx -0.70) for a large range of metallicity, independently of the ICF used to compute the neon total abundance is derived.Comment: 17 pages, 14 figures, accepted by MNRA

    Polycyclic Aromatic Hydrocarbon in the Central Region of the Seyfert 2 Galaxy NGC1808

    Get PDF
    We present mid infrared (MIR) spectra of the Seyfert 2 (Sy 2) galaxy NGC 1808, obtained with the Gemini's Thermal-Region Camera Spectrograph (T-ReCS) at a spatial resolution of 26 pc. The high spatial resolution allowed us to detect bright polycyclic aromatic hydrocarbons (PAHs) emissions at 8.6micron and 11.3micron in the galaxy centre (26 pc) up to a radius of 70 pc from the nucleus. The spectra also present [Ne ii]12.8micron ionic lines, and H2 S(2)12.27micron molecular gas line. We found that the PAHs profiles are similar to Peeters's A class, with the line peak shifted towards the blue. The differences in the PAH line profiles also suggests that the molecules in the region located 26 pc NE of the nucleus are more in the neutral than in the ionised state, while at 26 pc SW of the nucleus, the molecules are mainly in ionised state. After removal of the underlying galaxy contribution, the nuclear spectrum can be represented by a Nenkova's clumpy torus model, indicating that the nucleus of NGC 1808 hosts a dusty toroidal structure with an angular cloud distribution of sigma = 70degree, observer's view angle i = 90degree, and an outer radius of R0 = 0.55 pc. The derived column density along the line of sight is NH = 1.5 x 10^24 cm-2, which is sufficient to block the hard radiation from the active nucleus, and would explain the presence of PAH molecules near to the NGC 1808's active nucleus.Comment: Accepted by MNRAS 2012 December

    Feeding and Feedback in the Inner Kiloparsec of the Active Galaxy NGC2110

    Get PDF
    We present two-dimensional gaseous kinematics of the inner 1.1 x 1.6kpc^2 of the Seyfert 2 galaxy NGC2110, from optical spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of 100pc. Gas emission is observed over the whole field-of-view, with complex - and frequently double - emission-line profiles. We have identified four components in the emitting gas, according to their velocity dispersion (sigma), which we refer to as: (1) warm gas disk (sigma = 100-220km/s); (2) cold gas disk (sigma = 60-90km/s); (3) nuclear component (sigma = 220-600km/s); and (4) northern cloud (sigma = 60-80km/s). Both the cold and warm disk components are dominated by rotation and have similar gas densities, but the cold gas disk has lower velocity dispersions and reaches higher rotation velocities. We attribute the warm gas disk to a thick gas layer which encompasses the cold disk as observed in some edge-on spiral galaxies. After subtraction of a rotation model from the cold disk velocity field, we observe excess blueshifts of 50km/s in the far side of the galaxy as well as similar excess redshifts in the near side. These residuals can be interpreted as due to nuclear inflow in the cold gas, with an estimated ionized gas mass inflow rate of 2.2 x 10^(-2)Msun/yr. We have also subtracted a rotating model from the warm disk velocity field and found excess blueshifts of 100km/s to the SW of the nucleus and excess redshifts of 40km/s to the NE, which we attribute to gas disturbed by an interaction with a nuclear spherical outflow. This nuclear outflow is the origin of the nuclear component observed within the inner 300pc and it has a mass outflow rate of 0.9Msun/yr. In a region between 1" and 4" north of the nucleus we find a new low sigma component of ionized gas which we attribute to a high latitude cloud photoionized by the nuclear source.Comment: 17 pages, 13 figures, 1 table; accepted for publication in MNRA

    High Spatial Resolution of the Mid-Infrared Emission of Compton-Thick Seyfert 2 Galaxy Mrk3

    Get PDF
    Mid-infrared (MIR) spectra observed with Gemini/Michelle were used to study the nuclear region of the Compton-thick Seyfert 2 (Sy 2) galaxy Mrk 3 at a spatial resolution of \sim200 pc. No polycyclic aromatic hydrocarbons (PAHs) emission bands were detected in the N-band spectrum of Mrk 3. However, intense [Ar III] 8.99 μ\mum, [S IV] 10.5 μ\mum and [Ne II] 12.8 μ\mum ionic emission-lines, as well as silicate absorption feature at 9.7μ\mum have been found in the nuclear extraction (\sim200 pc). We also present subarcsecond-resolution Michelle N-band image of Mrk 3 which resolves its circumnuclear region. This diffuse MIR emission shows up as a wings towards East-West direction closely aligned with the S-shaped of the Narrow Line Region (NLR) observed at optical [O III]λ\lambda5007\AA image with Hubble/FOC. The nuclear continuum spectrum can be well represented by a theoretical torus spectral energy distribution (SED), suggesting that the nucleus of Mrk 3 may host a dusty toroidal structure predicted by the unified model of active galactic nucleus (AGN). In addition, the hydrogen column density (NH=4.83.1+3.3×1023_H\,=\,4.8^{+3.3}_{-3.1}\times\,10^{23} cm2^{-2}) estimated with a torus model for Mrk 3 is consistent with the value derived from X-ray spectroscopy. The torus model geometry of Mrk 3 is similar to that of NGC 3281, both Compton-thick galaxies, confirmed through fitting the 9.7μ\mum silicate band profile. This results might provide further evidence that the silicate-rich dust can be associated with the AGN torus and may also be responsible for the absorption observed at X-ray wavelengths in those galaxies.Comment: 11 pages, 6 figure

    Panchromatic Averaged Stellar Populations: PaasP

    Get PDF
    We study how the spectral fitting of galaxies, in terms of light fractions derived in one spectral region translates into another region, by using results from evolutionary synthesis models. In particular, we examine propagation dependencies on Evolutionary Population Synthesis (EPS, {\sc grasil}, {\sc galev}, Maraston and {\sc galaxev}) models, age, metallicity, and stellar evolution tracks over the near-UV---near infrared (NUV---NIR, 3500\AA\ to 2.5\mc) spectral region. Our main results are: as expected, young (tt \lesssim 400 Myr) stellar population fractions derived in the optical cannot be directly compared to those derived in the NIR, and vice versa. In contrast, intermediate to old age (tt \gtrsim 500 Myr) fractions are similar over the whole spectral region studied. The metallicity has a negligible effect on the propagation of the stellar population fractions derived from NUV --- NIR. The same applies to the different EPS models, but restricted to the range between 3800 \AA\ and 9000 \AA. However, a discrepancy between {\sc galev}/Maraston and {\sc grasil}/{\sc galaxev} models occurs in the NIR. Also, the initial mass function (IMF) is not important for the synthesis propagation. Compared to {\sc starlight} synthesis results, our propagation predictions agree at \sim95% confidence level in the optical, and \sim85% in the NIR. {\bf In summary, spectral fitting} performed in a restricted spectral range should not be directly propagated from the NIR to the UV/Optical, or vice versa. We provide equations and an on-line form ({\bf Pa}nchromatic {\bf A}veraged {\bf S}tellar {\bf P}opulation - \paasp) to be used for this purpose.Comment: 13 pages and 10 figures. Accepted by MNRA
    corecore