882 research outputs found

    The emerging role of virtual reality as an adjunct to procedural sedation and anesthesia: a narrative review

    Get PDF
    Over the past 20 years, there has been a significant reduction in the incidence of adverse events associated with sedation outside of the operating room. Non-pharmacologic techniques are increasingly being used as peri-operative adjuncts to facilitate and promote anxiolysis, analgesia and sedation, and to reduce adverse events. This narrative review will briefly explore the emerging role of immersive reality in the peri-procedural care of surgical patients. Immersive virtual reality (VR) is intended to distract patients with the illusion of β€œbeing present” inside the computer-generated world, drawing attention away from their anxiety, pain, and discomfort. VR has been described for a variety of procedures that include colonoscopies, venipuncture, dental procedures, and burn wound care. As VR technology develops and the production costs decrease, the role and application of VR in clinical practice will expand. It is important for medical professionals to understand that VR is now available for prime-time use and to be aware of the growing body in the literature that supports VR.info:eu-repo/semantics/publishedVersio

    Mechanisms Underlying HIV Associated Non-infectious Lung Disease

    Get PDF
    Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH

    Expression and DNA methylation of TNF, IFNG and FOXP3 in colorectal cancer and their prognostic significance.

    Get PDF
    BACKGROUND: Colorectal cancer (CRC) progression is associated with suppression of host cell-mediated immunity and local immune escape mechanisms. Our aim was to assess the immune function in terms of expression of TNF, IFNG and FOXP3 in CRC. METHODS: Sixty patients with CRC and 15 matched controls were recruited. TaqMan quantitative PCR and methylation-specific PCR was performed for expression and DNA methylation analysis of TNF, IFNG and FOXP3. Survival analysis was performed over a median follow-up of 48 months. RESULTS: TNF was suppressed in tumour and IFNG was suppressed in peripheral blood mononuclear cells (PBMCs) of patients with CRC. Tumours showed enhanced expression of FOXP3 and was significantly higher when tumour size was >38 mm (median tumour size; P=0.006, Mann-Whitney U-test). Peripheral blood mononuclear cell IFNG was suppressed in recurrent CRC (P=0.01). Methylated TNFpromoter (P=0.003) and TNFexon1 (P=0.001) were associated with significant suppression of TNF in tumours. Methylated FOXP3cpg was associated with significant suppression of FOXP3 in both PBMC (P=0.018) and tumours (P=0.010). Reduced PBMC FOXP3 expression was associated with significantly worse overall survival (HR=8.319, P=0.019). CONCLUSIONS: We have detected changes in the expression of immunomodulatory genes that could act as biomarkers for prognosis and future immunotherapeutic strategies

    Second primary cancers after radiation for prostate cancer: a review of data from planning studies

    Get PDF
    A review of planning studies was undertaken to evaluate estimated risks of radiation induced second primary cancers (RISPC) associated with different prostate radiotherapy techniques for localised prostate cancer. A total of 83 publications were identified which employed a variety of methods to estimate RISPC risk. Of these, the 16 planning studies which specifically addressed absolute or relative second cancer risk using dose–response models were selected for inclusion within this review. There are uncertainties and limitations related to all the different methods for estimating RISPC risk. Whether or not dose models include the effects of the primary radiation beam, as well as out-of-field regions, influences estimated risks. Regarding the impact of IMRT compared to 3D-CRT, at equivalent energies, several studies suggest an increase in risk related to increased leakage contributing to out-of-field RISPC risk, although in absolute terms this increase in risk may be very small. IMRT also results in increased low dose normal tissue irradiation, but the extent to which this has been estimated to contribute to RISPC risk is variable, and may also be very small. IMRT is often delivered using 6MV photons while conventional radiotherapy often requires higher energies to achieve adequate tissue penetration, and so comparisons between IMRT and older techniques should not be restricted to equivalent energies. Proton and brachytherapy planning studies suggest very low RISPC risks associated with these techniques. Until there is sufficient clinical evidence regarding RISPC risks associated with modern irradiation techniques, the data produced from planning studies is relevant when considering which patients to irradiate, and which technique to employ

    CD28/CD154 Blockade Prevents Autoimmune Diabetes by Inducing Nondeletional Tolerance After Effector T-Cell Inhibition and Regulatory T-Cell Expansion

    Get PDF
    OBJECTIVEβ€”Blocking T-cell signaling is an effective means to prevent autoimmunity and allograft rejection in many animal models, yet the clinical translation of many of these approaches has not resulted in the success witnessed in experimental systems. Improved understanding of these approaches may assist in developing safe and effective means to treat disorders such as autoimmune diabetes

    High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability

    Get PDF
    High-level microsatellite instability (MSI-H) in colorectal cancer accounts for about 12% of colorectal cancers and is typically associated with a dense infiltration with cytotoxic CD8-positive lymphocytes. The role of regulatory T cells that may interfere with the host's antitumoural immune response in MSI-H colorectal cancers has not been analysed yet. Using an antibody directed against the regulatory T-cell marker transcription factor forkhead box P3 (FOXP3), regulatory T cells were examined in 70 colorectal cancers with known MSI status (MSI-H, n=37; microsatellite stable, n=33). In MSI-H colorectal cancers, we found a significantly higher intraepithelial infiltration with FOXP3-positive cells (median: 8.5 cells per 0.25 mm2 vs 3.1 cells per 0.25 mm2 in microsatellite stable, P<0.001), and a significantly elevated ratio of intraepithelial to stromal infiltration (0.05 vs 0.01 in microsatellite stable, P<0.001). CD8-positive cell counts were related positively to the number of FOXP3-positive cells (Spearman's ρ=0.56 and 0.55, respectively). Our results show that the elevated number of CD8-positive lymphocytes found in MSI-H colorectal cancers is paralleled by an enhanced infiltration with CD8-negative FOXP3-positive cells. These data suggest that FOXP3-positive cells may play a role in the regulation of the immune response directed against MSI-H colorectal cancers at the primary tumour site

    Impact of the TCR Signal on Regulatory T Cell Homeostasis, Function, and Trafficking

    Get PDF
    Signaling through the T cell antigen receptor (TCR) is important for the homeostasis of naΓ―ve and memory CD4+ T cells. The significance of TCR signaling in regulatory T (Treg) cells has not been systematically addressed. Using an Ox40-cre allele that is prominently expressed in Treg cells, and a conditional null allele of the gene encoding p56Lck, we have examined the importance of TCR signaling in Treg cells. Inactivation of p56Lck resulted in abnormal Treg homeostasis characterized by impaired turnover, preferential redistribution to the lymph nodes, loss of suppressive function, and striking changes in gene expression. Abnormal Treg cell homeostasis and function did not reflect the involvement of p56Lck in CD4 function because these effects were not observed when CD4 expression was inactivated by Ox40-cre.The results make clear multiple aspects of Treg cell homeostasis and phenotype that are dependent on a sustained capacity to signal through the TCR

    Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells

    Get PDF
    The forkhead-box protein P3 (Foxp3) is a key transcription factor for the development and suppressive activity of regulatory T cells (Tregs), a T cell subset critically involved in the maintenance of self-tolerance and prevention of over-shooting immune responses. However, the transcriptional regulation of Foxp3 expression remains incompletely understood. We have previously shown that epigenetic modifications in the CpG-rich Treg-specific demethylated region (TSDR) in the Foxp3 locus are associated with stable Foxp3 expression. We now demonstrate that the methylation state of the CpG motifs within the TSDR controls its transcriptional activity rather than a Treg-specific transcription factor network. By systematically mutating every CpG motif within the TSDR, we could identify four CpG motifs, which are critically determining the transcriptional activity of the TSDR and which serve as binding sites for essential transcription factors, such as CREB/ATF and NF-ΞΊB, which have previously been shown to bind to this element. The transcription factor Ets-1 was here identified as an additional molecular player that specifically binds to the TSDR in a demethylation-dependent manner in vitro. Disruption of the Ets-1 binding sites within the TSDR drastically reduced its transcriptional enhancer activity. In addition, we found Ets-1 bound to the demethylated TSDR in ex vivo isolated Tregs, but not to the methylated TSDR in conventional CD4+ T cells. We therefore propose that Ets-1 is part of a larger protein complex, which binds to the TSDR only in its demethylated state, thereby restricting stable Foxp3 expression to the Treg lineage
    • …
    corecore