629 research outputs found

    Doping and band-gap engineering of an intrazeolite tungsten(VI) oxide supralattice

    Get PDF
    New results are presented concerning the topotactic self-assembly, n-type doping and band-gap engineering of an intrazeolite tungsten(VI) oxide supralattice n(W03)-Na56Y, where 0 < η < 32, built-up of single size and shape (W03)2 dimers. In particular it has been found that the oxygen content of these dimers can be quantitatively adjusted by means of a thermal vacuum induced reversible reductive-elimination oxidative-addition of dioxygen. This provides access to new n(W03.x)-Na56Y materials (0 < χ ^ 1.0) in which the oxygen content, structural properties and electronic architecture of the dimers are changed. In this way one can precisely control the oxidation state, degree of η-doping and band-filling of a tungsten(VI) oxide supralattice through an approach which can be considered akin to, but distinct in detail to, that found in the Magneli crystallographic shear phases of non-stoichiometric bulk W03.x . Another discovery concerns the ability to alter local electrostatic fields experienced by the tungsten(VI) oxide moieties housed in the 13Ä supercages of 16(W03)-M36Y, by varying the ionic potential of the constituent supercage M + cations across the alkali metal series. This method provides the first opportunity to fine-tune the band-gap of a tungsten(VI) oxide supralattice. Α miniband electronic description is advanced as a qualitative first attempt to understand the origin of the above effects. The implications of these discoveries are that cluster size, composition and intrinsic electrostatic field effects can be used to "chemically manipulate" (engineer) the doping and band architecture of intrazeolite supralattices of possible interest in quantum electronics and nonlinear optics

    A novel hybrid material with calcium and strontium release capability

    Get PDF
    The preparation of PDMS–TEOS–CaO hybrid materials by sol–gel techniques has been widely described in previous works. Calcium nitrate is the most common source of calcium used in these preparations. However, to remove possible toxic nitrate by-products a thermal treatment is necessary at temperatures above 500 1C, which leads to the degradation of the polymeric components of the hybrids. Strontium has already shown some promising results in the therapeutic area, being used in cases of osteoporosis and low bone density. In this study a new potential bioactive hybrid material was prepared, by sol–gel techniques, using calcium acetate as a novel calcium source. Also, for the first time, incorporation of strontium in a PDMS–TEOS hybrid system was evaluated. Samples were characterized before and after immersion in Kokubo’s Simulated Body Fluid (SBF) by SEM, EDS, ICP and FT-IR spectroscopy

    Synthesis and characterization of modified silica gel as an intermediate in the generation of gaseous standard mixtures

    Get PDF
    A possibility of extending analytical applications of chemically modified silica gels is described. This involves their utilization for the generation of gaseous standard mixtures consisting of methyl chloride as the analyte and nitrogen as a carrier gas to be used for the calibration of the GC-FID system. N-methylmorpholine was chemically bonded to the propylsilylated surface of silica gel forming chloride of an appropriate immobilized compound which, under certain conditions, undergoes thermal decomposition yielding a single, volatile component (methyl chloride). Such a method of generating specific amounts of a standard substance can be used both for a single point calibration and for checking the accuracy of an analytical instrument in a relatively wide measurement range. It was found that 3.40±0.081 mg of methyl chloride can be generated per 1 g of the modified gel

    Low-energy cross section of the 7Be(p,g)8B solar fusion reaction from Coulomb dissociation of 8B

    Full text link
    Final results from an exclusive measurement of the Coulomb breakup of 8B into 7Be+p at 254 A MeV are reported. Energy-differential Coulomb-breakup cross sections are analyzed using a potential model of 8B and first-order perturbation theory. The deduced astrophysical S_17 factors are in good agreement with the most recent direct 7Be(p,gamma)8B measurements and follow closely the energy dependence predicted by the cluster-model description of 8B by Descouvemont. We extract a zero-energy S_17 factor of 20.6 +- 0.8 (stat) +- 1.2 (syst) eV b.Comment: 14 pages including 16 figures, LaTeX, accepted for publication in Physical Review C. Minor changes in text and layou

    Core-coupled states and split proton-neutron quasi-particle multiplets in 122-126Ag

    Get PDF
    Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe beam and the relativistic fission of 238U. The fragments were mass analyzed with the GSI Fragment separator and subsequently implanted into a passive stopper. Isomeric transitions were detected by 105 HPGe detectors. Eight isomeric states were observed in 122-126Ag nuclei. The level schemes of 122,123,125Ag were revised and extended with isomeric transitions being observed for the first time. The excited states in the odd-mass silver isotopes are interpreted as core-coupled states. The isomeric states in the even-mass silver isotopes are discussed in the framework of the proton-neutron split multiplets. The results of shell-model calculations, performed for the most neutron-rich silver nuclei are compared to the experimental data

    Molecular Mechanism of Thymidylate Synthase Inhibition by N 4 Hydroxy dCMP in View of Spectrophotometric and Crystallographic Studies

    Get PDF
    Novel evidence is presented allowing further clarification of the mechanism of the slow binding thymidylate synthase TS inhibition by N4 hydroxy dCMP N4 OH dCMP . Spectrophotometric monitoring documented time and temperature , and N4 OH dCMP dependent TS catalyzed dihydrofolate production, accompanying the mouse enzyme incubation with N4 OH dCMP and N5,10 methylenetetrahydrofolate, known to inactivate the enzyme by the covalent binding of the inhibitor, suggesting the demonstrated reaction to be uncoupled from the pyrimidine C 5 methylation. The latter was in accord with the hypothesis based on the previously presented structure of mouse TS cf. PDB ID 4EZ8 , and with conclusions based on the present structure of the parasitic nematode Trichinella spiralis, both co crystallized with N4 OH dCMP and N5,10 methylenetetrahdrofolate. The crystal structure of the mouse TS N4 OH dCMP complex soaked with N5,10 methylenetetrahydrofolate revealed the reaction to run via a unique imidazolidine ring opening, leaving the one carbon group bound to the N 10 atom, thus too distant from the pyrimidine C 5 atom to enable the electrophilic attack and methylene group transfe
    • 

    corecore