176 research outputs found

    Editorial

    Get PDF
    Denver, Theological Comments Will the Decision on Fellowship at Denver Make a Difference? Fellowship and the Younger Sister Churches Synodical Conventions: A Theological Perspectiv

    White matter integrity in mice requires continuous myelin synthesis at the inner tongue

    Get PDF
    Myelin, the electrically insulating sheath on axons, undergoes dynamic changes over time. However, it is composed of proteins with long lifetimes. This raises the question how such a stable structure is renewed. Here, we study the integrity of myelinated tracts after experi- mentally preventing the formation of new myelin in the CNS of adult mice, using an inducible Mbp null allele. Oligodendrocytes survive recombination, continue to express myelin genes, but they fail to maintain compacted myelin sheaths. Using 3D electron microscopy and mass spectrometry imaging we visualize myelin-like membranes failing to incorporate adaxonally, most prominently at juxta-paranodes. Myelinoid body formation indicates degradation of existing myelin at the abaxonal side and the inner tongue of the sheath. Thinning of compact myelin and shortening of internodes result in the loss of about 50% of myelin and axonal pathology within 20 weeks post recombination. In summary, our data suggest that functional axon-myelin units require the continuous incorporation of new myelin membranes

    Ketogenic diet uncovers differential metabolic plasticity of brain cells

    Get PDF
    To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type–specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease

    Neisseria gonorrhoeae Infection Induces Altered Amphiregulin Processing and Release

    Get PDF
    Adhesion of the human pathogen Neisseria gonorrhoeae has established effects on the host cell and evokes a variety of cellular events including growth factor activation. In the present study we report that infection with N. gonorrhoeae causes altered amphiregulin processing and release in human epithelial cells. Amphiregulin is a well-studied growth factor with functions in various cell processes and is upregulated in different forms cancer and proliferative diseases. The protein is prototypically cleaved on the cell surface in response to external stimuli. We demonstrate that upon infection, a massive upregulation of amphiregulin mRNA is seen. The protein changes its subcellular distribution and is also alternatively cleaved at the plasma membrane, which results in augmented release of an infection-specific 36 kDa amphiregulin product from the surface of human cervical epithelial cells. Further, using antibodies directed against different domains of the protein we could determine the impact of infection on pro-peptide processing. In summary, we present data showing that the infection of N. gonorrhoeae causes an alternative amphiregulin processing, subcellular distribution and release in human epithelial cervical cells that likely contribute to the predisposition cellular abnormalities and anti-apoptotic features of N. gonorrhoeae infections

    Revision of the Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis Classification Schema for Melanocytic Lesions: A Consensus Statement

    Full text link
    IMPORTANCE A standardized pathology classification system for melanocytic lesions is needed to aid both pathologists and clinicians in cataloging currently existing diverse terminologies and in the diagnosis and treatment of patients. The Melanocytic Pathology Assessment Tool and Hierarchy for Diagnosis (MPATH-Dx) has been developed for this purpose. OBJECTIVE To revise the MPATH-Dx version 1.0 classification tool, using feedback from dermatopathologists participating in the National Institutes of Health-funded Reducing Errors in Melanocytic Interpretations (REMI) Study and from members of the International Melanoma Pathology Study Group (IMPSG). EVIDENCE REVIEW Practicing dermatopathologists recruited from 40 US states participated in the 2-year REMI study and provided feedback on the MPATH-Dx version 1.0 tool. Independently, member dermatopathologists participating in an IMPSG workshop dedicated to the MPATH-Dx schema provided additional input for refining the MPATH-Dx tool. A reference panel of 3 dermatopathologists, the original authors of the MPATH-Dx version 1.0 tool, integrated all feedback into an updated and refined MPATH-Dx version 2.0. FINDINGS The new MPATH-Dx version 2.0 schema simplifies the original 5-class hierarchy into 4 classes to improve diagnostic concordance and to provide more explicit guidance in the treatment of patients. This new version also has clearly defined histopathological criteria for classification of classes I and II lesions; has specific provisions for the most frequently encountered low-cumulative sun damage pathway of melanoma progression, as well as other, less common World Health Organization pathways to melanoma; provides guidance for classifying intermediate class II tumors vs melanoma; and recognizes a subset of pT1a melanomas with very low risk and possible eventual reclassification as neoplasms lacking criteria for melanoma. CONCLUSIONS AND RELEVANCE The implementation of the newly revised MPATH-Dx version 2.0 schema into clinical practice is anticipated to provide a robust tool and adjunct for standardized diagnostic reporting of melanocytic lesions and management of patients to the benefit of both health care practitioners and patients

    Synergistic Effect of Hyaluronate Fragments in Retinaldehyde-Induced Skin Hyperplasia Which Is a Cd44-Dependent Phenomenon

    Get PDF
    BACKGROUND: CD44 is a polymorphic proteoglycan and functions as the principal cell-surface receptor for hyaluronate (HA). Heparin-binding epidermal growth factor (HB-EGF) activation of keratinocyte erbB receptors has been proposed to mediate retinoid-induced epidermal hyperplasia. We have recently shown that intermediate size HA fragments (HAFi) reverse skin atrophy by a CD44-dependent mechanism. METHODOLOGY AND PRINCIPAL FINDINGS: Treatment of primary mouse keratinocyte cultures with retinaldehyde (RAL) resulted in the most significant increase in keratinocyte proliferation when compared with other retinoids, retinoic acid, retinol or retinoyl palmitate. RAL and HAFi showed a more significant increase in keratinocyte proliferation than RAL or HAFi alone. No proliferation with RAL was observed in CD44-/- keratinocytes. HA synthesis inhibitor, 4-methylumbelliferone inhibited the proliferative effect of RAL. HB-EGF, erbB1, and tissue inhibitor of MMP-3 blocking antibodies abrogated the RAL- or RAL- and HAFi-induced keratinocyte proliferation. Topical application of RAL or RAL and HAFi for 3 days caused a significant epidermal hyperplasia in the back skin of wild-type mice but not in CD44-/- mice. Topical RAL and HAFi increased epidermal CD44 expression, and the epidermal and dermal HA. RAL induced the expression of active HB-EGF and erbB1. However, treatment with RAL and HAFi showed a more significant increase in pro-HB-EGF when compared to RAL or HAFi treatments alone. We then topically applied RAL and HAFi twice a day to the forearm skin of elderly dermatoporosis patients. After 1 month of treatment, we observed a significant clinical improvement. CONCLUSIONS AND SIGNIFICANCE: Our results indicate that (i) RAL-induced in vitro and in vivo keratinocyte proliferation is a CD44-dependent phenomenon and requires the presence of HA, HB-EGF, erbB1 and MMPs, (ii) RAL and HAFi show a synergy in vitro and in vivo in mouse skin, and (iii) the combination of RAL and HAFi seems to have an important therapeutic effect in dermatoporosis

    Suppression of Autophagy Dysregulates the Antioxidant Response and Causes Premature Senescence of Melanocytes

    Get PDF
    YesAutophagy is the central cellular mechanism for delivering organelles and cytoplasm to lysosomes for degradation and recycling of their molecular components. To determine the contribution of autophagy to melanocyte (MC) biology, we inactivated the essential autophagy gene Atg7 specifically in MCs using the Cre-loxP system. This gene deletion efficiently suppressed a key step in autophagy, lipidation of microtubule-associated protein 1 light chain 3 beta (LC3), in MCs and induced slight hypopigmentation of the epidermis in mice. The melanin content of hair was decreased by 10–15% in mice with autophagy-deficient MC as compared with control animals. When cultured in vitro, MCs from mutant and control mice produced equal amounts of melanin per cell. However, Atg7-deficient MCs entered into premature growth arrest and accumulated reactive oxygen species (ROS) damage, ubiquitinated proteins, and the multi-functional adapter protein SQSTM1/p62. Moreover, nuclear factor erythroid 2–related factor 2 (Nrf2)–dependent expression of NAD(P)H dehydrogenase, quinone 1, and glutathione S-transferase Mu 1 was increased, indicating a contribution of autophagy to redox homeostasis in MCs. In summary, the results of our study suggest that Atg7-dependent autophagy is dispensable for melanogenesis but necessary for achieving the full proliferative capacity of MCs
    corecore