12,340 research outputs found

    Ultra Low-Power Analog Median Filters

    Get PDF
    The design and implementation of three analog median filter topologies, whose transistors operate in the deep weak-inversion region, is described. The first topology is a differential pairs array, in which drain currents are driven into two nodes in a differential fashion, while the second topology is based on a wide range OTA, which is used to maximize the dynamic range. Finally, the third topology uses three range-extended OTAs. The proposed weak-inversion filters were designed and fabricated in ON Semiconductor 0.5 micrometer technology through MOSIS. Experimental results of three-input fabricated prototypes for all three topologies are show, where power consumptions of 90nW in the first case, and 270nW in the other two cases can be noticed. A dual power supply +/-1.5 Volts were used

    Control of the chirality and polarity of magnetic vortices in triangular nanodots

    Get PDF
    Magnetic vortex dynamics in lithographically prepared nanodots is currently a subject of intensive research, particularly after recent demonstration that the vortex polarity can be controlled by in-plane magnetic field. This has stimulated the proposals of non-volatile vortex magnetic random access memories. In this work, we demonstrate that triangular nanodots offer a real alternative where vortex chirality, in addition to polarity, can be controlled. In the static regime, we show that vortex chirality can be tailored by applying in-plane magnetic field, which is experimentally imaged by means of Variable-Field Magnetic Force Microscopy. In addition, the polarity can be also controlled by applying a suitable out-of-plane magnetic field component. The experiment and simulations show that to control the vortex polarity, the out-of-plane field component, in this particular case, should be higher than the in-plane nucleation field. Micromagnetic simulations in the dynamical regime show that the magnetic vortex polarity can be changed with short-duration magnetic field pulses, while longer pulses change the vortex chirality.Comment: 18 pages, 11 figure

    Modulational and Parametric Instabilities of the Discrete Nonlinear Schr\"odinger Equation

    Get PDF
    We examine the modulational and parametric instabilities arising in a non-autonomous, discrete nonlinear Schr{\"o}dinger equation setting. The principal motivation for our study stems from the dynamics of Bose-Einstein condensates trapped in a deep optical lattice. We find that under periodic variations of the heights of the interwell barriers (or equivalently of the scattering length), additionally to the modulational instability, a window of parametric instability becomes available to the system. We explore this instability through multiple-scale analysis and identify it numerically. Its principal dynamical characteristic is that, typically, it develops over much larger times than the modulational instability, a feature that is qualitatively justified by comparison of the corresponding instability growth rates

    Spitzer Space Telescope Measurements of Dust Reverberation Lags in the Seyfert 1 Galaxy NGC 6418

    Get PDF
    We present results from a fifteen-month campaign of high-cadence (~ 3 days) mid-infrared Spitzer and optical (B and V ) monitoring of the Seyfert 1 galaxy NGC 6418, with the objective of determining the characteristic size of the dusty torus in this active galactic nucleus (AGN). We find that the 3.6 μ\mum and 4.5 μ\mum flux variations lag behind those of the optical continuum by 37.22.2+2.437.2^{+2.4}_{-2.2} days and 47.13.1+3.147.1^{+3.1}_{-3.1} days, respectively. We report a cross-correlation time lag between the 4.5 μ\mum and 3.6 μ\mum flux of 13.90.1+0.513.9^{+0.5}_{-0.1} days. The lags indicate that the dust emitting at 3.6 μ\mum and 4.5 μ\mum is located at a distance of approximately 1 light-month (~ 0.03 pc) from the source of the AGN UV-optical continuum. The reverberation radii are consistent with the inferred lower limit to the sublimation radius for pure graphite grains at 1800 K, but smaller by a factor of ~ 2 than the corresponding lower limit for silicate grains; this is similar to what has been found for near-infrared (K-band) lags in other AGN. The 3.6 and 4.5 μ\mum reverberation radii fall above the K-band τL0.5\tau \propto L^{0.5} size-luminosity relationship by factors 2.7\lesssim 2.7 and 3.4\lesssim 3.4, respectively, while the 4.5 μ\mum reverberation radius is only 27% larger than the 3.6 μ\mum radius. This is broadly consistent with clumpy torus models, in which individual optically thick clouds emit strongly over a broad wavelength range.Comment: 13 pages, 9 figure

    Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Volatiles

    Get PDF
    Pilot plant ultrafiltration was used to mimic the dominant U.S. commercial pomegranate juice extraction method (hydraulic pressing whole fruit), to deliver a not-from-concentrate (NFC) juice that was high-temperature short-time pasteurized and stored at 4 and 25 °C. Recovered were 46 compounds, of which 38 were routinely isolated and subjected to analysis of variance to assess these NFC juices. Herein, 18 of the 21 consensus pomegranate compounds were recovered. Ultrafiltration resulted in significant decreases for many compounds. Conversely, pasteurization resulted in compound increases. Highly significant decreases in 12 consensus compounds were observed during storage. Principal component analysis demonstrated clearly which compounds were tightly associated, and how storage samples behaved very similarly, independent of temperature. Based on these data and previous work we reported, this solid-phase microextraction (SPME) method delivered a robust ‘Wonderful’ volatile profile in NFC juices that is likely superior qualitatively and perhaps quantitatively to typical commercial offerings

    A new method to trace colloid transport pathways in macroporous soils using X‐ray computed tomography and fluorescence macrophotography

    Get PDF
    The fast and deep percolation of particles through soil is attributed to preferential flow pathways, and their extent can be critical in the filtering of particulate pollutants in soil. Particle deposition on the pore walls and transport between the pores and matrix modulate the preferential flow of particulate pollutants. In the present research, we developed a novel method of combining fluorescence macrophotography and X‐ray computed tomography (CT) to track preferential pathways of colloidal fluorescent microspheres (MS) in breakthrough experiments. We located accumulations of MS by fluorescence imaging and used them to delimit the deposition structures along the preferential colloid pathways by superimposing these images on the 3‐D pore network obtained from CT. Advection–diffusion with transport parameters from the dual‐porosity equation correlated with preferential pathway features across different soil management techniques. However, management did not influence the morphology of the MS preferential pathways. Preferential flow occurred in only a small fraction of the total pore network and was controlled by pores connected to the soil surface and by matrix density
    corecore