435 research outputs found

    The biosocial event : responding to innovation in the life sciences

    Get PDF
    Innovation in the life sciences calls for reflection on how sociologies separate and relate life processes and social processes. To this end we introduce the concept of the ‘biosocial event’. Some life processes and social processes have more mutual relevance than others. Some of these relationships are more negotiable than others. We show that levels of relevance and negotiability are not static but can change within existing relationships. Such changes, or biosocial events, lie at the heart of much unplanned biosocial novelty and much deliberate innovation. We illustrate and explore the concept through two examples – meningitis infection and epidemic, and the use of sonic ‘teen deterrents’ in urban settings. We then consider its value in developing sociological practice oriented to critically constructive engagement with innovation in the life sciences

    Effects of MCF2L2, ADIPOQ and SOX2 genetic polymorphisms on the development of nephropathy in type 1 Diabetes Mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>MCF2L2, ADIPOQ </it>and <it>SOX2 </it>genes are located in chromosome 3q26-27, which is linked to diabetic nephropathy (DN). <it>ADIPOQ </it>and <it>SOX2 </it>genetic polymorphisms are found to be associated with DN. In the present study, we first investigated the association between <it>MCF2L2 </it>and DN, and then evaluated effects of these three genes on the development of DN.</p> <p>Methods</p> <p>A total of 1177 type 1 diabetes patients with and without DN from the GoKinD study were genotyped with TaqMan allelic discrimination. All subjects were of European descent.</p> <p>Results</p> <p>Leu359Ile T/G variant in the <it>MCF2L2 </it>gene was found to be associated with DN in female subjects (P = 0.017, OR = 0.701, 95%CI 0.524-0.938) but not in males. The GG genotype carriers among female patients with DN had tendency decreased creatinine and cystatin levels compared to the carriers with either TT or TG genotypes. This polymorphism <it>MCF2L2-</it>rs7639705 together with SNPs of <it>ADIPOQ</it>-rs266729 and <it>SOX2</it>-rs11915160 had combined effects on decreased risk of DN in females (P = 0.001).</p> <p>Conclusion</p> <p>The present study provides evidence that <it>MCF2L2</it>, <it>ADIPOQ </it>and <it>SOX2 </it>genetic polymorphisms have effects on the resistance of DN in female T1D patients, and suggests that the linkage with DN in chromosome 3q may be explained by the cumulated genetic effects.</p

    Usefulness of health registries when estimating vaccine effectiveness during the influenza A(H1N1)pdm09 pandemic in Norway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the 2009-2010 pandemic in Norway, 12 513 laboratory-confirmed cases of pandemic influenza A(H1N1)pdm09, were reported to the Norwegian Surveillance System for Communicable Diseases (MSIS). 2.2 million persons (45% of the population) were vaccinated with an AS03-adjuvanted monovalent vaccine during the pandemic. Most of them were registered in the Norwegian Immunisation Registry (SYSVAK). Based on these registries, we aimed at estimating the vaccine effectiveness (VE) and describing vaccine failures during the pandemic in Norway, in order to evaluate the role of the vaccine as a preventive measure during the pandemic.</p> <p>Methods</p> <p>We conducted a population-based retrospective cohort study, linking MSIS and SYSVAK with pandemic influenza vaccination as exposure and laboratory-confirmed pandemic influenza as outcome. We measured VE by week and defined two thresholds for immunity; eight and 15 days after vaccination.</p> <p>Results</p> <p>The weekly VE ranged from 77% to 96% when considering 15 days or more after vaccination as the threshold of immunity and from 73% to 94% when considering eight days or more. Overall, 157 individuals contracted pandemic influenza eight or more days after vaccination (8.4/100,000 vaccinated), of these 58 had onset 15 days or more after vaccination (3.0/100,000 vaccinated). Most of the vaccine failures occurred during the first weeks of the vaccination campaign. More than 30% of the vaccine failures were found in people below 10 years of age.</p> <p>Conclusions</p> <p>Having available health registries with data regarding cases of specific disease and vaccination makes it feasible to estimate VE in a simple and rapid way. VE was high regardless the immunity threshold chosen. We encourage public health authorities in other countries to set up such registries. It is also important to consider including information on underlying diseases in registries already existing, in order to make it feasible to conduct more complete VE estimations.</p

    Adaptations of Avian Flu Virus Are a Cause for Concern

    Get PDF
    We are in the midst of a revolutionary period in the life sciences. Technological capabilities have dramatically expanded, we have a much improved understanding of the complex biology of selected microorganisms, and we have a much improved ability to manipulate microbial genomes. With this has come unprecedented potential for better control of infectious diseases and significant societal benefit. However, there is also a growing risk that the same science will be deliberately misused and that the consequences could be catastrophic. Efforts to describe or define life-sciences research of particular concern have focused on the possibility that knowledge or products derived from such research, or new technologies, could be directly misapplied with a sufficiently broad scope to affect national or global security. Research that might greatly enhance the harm caused by microbial pathogens has been of special concern (1–3). Until now, these efforts have suffered from a lack of specificity and a paucity of concrete examples of “dual use research of concern” (3). Dual use is defined as research that could be used for good or bad purposes. We are now confronted by a potent, real-world example

    A Research and Development (R&D) roadmap for influenza vaccines: Looking toward the future

    Get PDF
    Improved influenza vaccines are urgently needed to reduce the burden of seasonal influenza and to ensure a rapid and effective public-health response to future influenza pandemics. The Influenza Vaccines Research and Development (R&D) Roadmap (IVR) was created, through an extensive international stakeholder engagement process, to promote influenza vaccine R&D. The roadmap covers a 10-year timeframe and is organized into six sections: virology; immunology; vaccinology for seasonal influenza vaccines; vaccinology for universal influenza vaccines; animal and human influenza virus infection models; and policy, finance, and regulation. Each section identifies barriers, gaps, strategic goals, milestones, and additional R&D priorities germane to that area. The roadmap includes 113 specific R&D milestones, 37 of which have been designated high priority by the IVR expert taskforce. This report summarizes the major issues and priority areas of research outlined in the IVR. By identifying the key issues and steps to address them, the roadmap not only encourages research aimed at new solutions, but also provides guidance on the use of innovative tools to drive breakthroughs in influenza vaccine R&D.publishedVersio

    A Cell Culture–Derived Influenza Vaccine Provides Consistent Protection Against Infection and Reduces the Duration and Severity of Disease in Infected Individuals

    Get PDF
    A Vero cell culture–derived seasonal influenza vaccine provides consistently high levels of protection against cell culture–confirmed infection over a complete influenza season. Influenza symptoms are also less severe and of shorter duration in individuals who become infected despite vaccination
    corecore