62 research outputs found

    Variaciones del valor nutritivo del turrón de Jijona en las calidades suprema, extra y popular.

    Get PDF
    In this paper, the nutritive value of the three qualities of Jijona- Nougat has been analysed. These qualities are regulated by the Spanish Regulations for Nougat and Marzipan (Reglamentación Técnico-Sanitaria para Turrones y Mazapanes), (Real Decreto 1167/1990). Thirty-three samples of Jijona-Nougat have been studied: twenty-one samples belonging to «Suprema» quality (corresponding to three different batches of production of seven commercial brands). Nine samples belonging to «Extra» quality (three different batches of production of three commercial brands). Three «Popular» samples, corresponding to three different batches of production from the unique manufacturer found on the market. Moisture and macronutrients: protein, fat and carbohydrates, have been determined in all the samples. The results and their statistical study are shown in this paper.En este trabajo se ha estudiado el valor nutritivo del turrón de Jijona y las variaciones del mismo en las tres calidades tipificadas en la Reglamentación Técnico Sanitaria para Turrones y Mazapanes (Real Decreto 1167/1990). Para ello, se han analizado un total de treinta y tres muestras de turrón de Jijona, divididas de la siguiente forma: veintiuna muestras pertenecen a la calidad Suprema (correspondientes a tres lotes distintos de siete marcas comerciales), nueve a la Extra (tres lotes diferentes de tres marcas comerciales) y tres a la Popular, procedentes de tres lotes de un único fabricante encontrado en el comercio. En todas ellas se ha determinado el contenido de humedad y los macronutrientes: proteína, grasa y carbohidratos. Los resultados y su tratamiento estadístico se muestran en este trabajo

    Cytochrome c speeds up caspase cascade activation by blocking 14-3-3¿-dependent Apaf-1 inhibition article

    Get PDF
    Apoptosis is a highly regulated form of programmed cell death, essential to the development and homeostasis of multicellular organisms. Cytochrome c is a central figure in the activation of the apoptotic intrinsic pathway, thereby activating the caspase cascade through its interaction with Apaf-1. Our recent studies have revealed 14-3-3€ (a direct inhibitor of Apaf-1) as a cytosolic cytochrome c target. Here we explore the cytochrome c / 14-3-3€ interaction and show the ability of cytochrome c to block 14-3-3€-mediated Apaf-1 inhibition, thereby unveiling a novel function for cytochrome c as an indirect activator of caspase-9/3. We have used calorimetry, NMR spectroscopy, site mutagenesis and computational calculations to provide an insight into the structural features of the cytochrome c / 14-3-3€ complex. Overall, these findings suggest an additional cytochrome c-mediated mechanism to modulate apoptosome formation, shedding light onto the rigorous apoptotic regulation network

    The GB4.0 Platform, an All-In-One Tool for CRISPR/Cas-Based Multiplex Genome Engineering in Plants

    Get PDF
    CRISPR/Cas ability to target several loci simultaneously (multiplexing) is a game-changer in plant breeding. Multiplexing not only accelerates trait pyramiding but also can unveil traits hidden by functional redundancy. Furthermore, multiplexing enhances dCas-based programmable gene expression and enables cascade-like gene regulation. However, the design and assembly of multiplex constructs comprising tandemly arrayed guide RNAs (gRNAs) requires scarless cloning and is still troublesome due to the presence of repetitive sequences, thus hampering a more widespread use. Here we present a comprehensive extension of the software-assisted cloning platform GoldenBraid (GB), in which, on top of its multigene cloning software, we integrate new tools for the Type IIS-based easy and rapid assembly of up to six tandemly-arrayed gRNAs with both Cas9 and Cas12a, using the gRNA-tRNA-spaced and the crRNA unspaced approaches, respectively. As stress tests for the new tools, we assembled and used for Agrobacterium-mediated stable transformation a 17 Cas9-gRNAs construct targeting a subset of the Squamosa-Promoter Binding Protein-Like (SPL) gene family in Nicotiana tabacum. The 14 selected genes are targets of miR156, thus potentially playing an important role in juvenile-to-adult and vegetative-to-reproductive phase transitions. With the 17 gRNAs construct we generated a collection of Cas9-free SPL edited T plants harboring up to 9 biallelic mutations and showing leaf juvenility and more branching. The functionality of GB-assembled dCas9 and dCas12a-based CRISPR/Cas activators and repressors using single and multiplexing gRNAs was validated using a Luciferase reporter with the Solanum lycopersicum Mtb promoter or the Agrobacterium tumefaciens nopaline synthase promoter in transient expression in Nicotiana benthamiana. With the incorporation of the new web-based tools and the accompanying collection of DNA parts, the GB4.0 genome edition turns an all-in-one open platform for plant genome engineering

    2,4-dinitrophenyl ether-containing chemodosimeters for the selective and sensitive 'in vitro' and 'in vivo' detection of hydrogen sulfide

    Full text link
    [EN] Four probes (i.e. D1¿D4) for the selective and sensitive fluorogenic detection of HS2 have been prepared and characterised. HEPES (10 mM, pH 7.4)¿DMSO 99:1 v/v solutions of D1¿D4 are essentially non-fluorescent. Changes in the emission using D1¿D4 in the presence of anions (F2, Cl2, Br2, I2, N2 3 , CN2, SCN2, AcO2, CO22 3 , PO22 4 , SO22 4 , HS2 and OH2), biothiols (GSH, Cys, Hcy, Me ¿Cys and lipoic acid), reducing agents (SO22 3 and S2O22 3 ) and oxidants (H2O2) demonstrated that only HS2 is able to induce the appearance of intense emission bands in the 400¿ 520 nm range in the four probes. The selectivity observed was ascribed to a unique hydrogen sulfide-induced hydrolysis of the 2,4-dinitrophenyl ether moiety that yielded the corresponding free highly fluorescent alcohols. The potential detection of intracellular HS2 was also studied.Financial support from the Spanish Government (Project MAT2012-38429-C04-01) and the Generalitat Valencia (Project PROMETEO/2009/016) is gratefully acknowledged. S.E. is grateful to the Generalitat Valenciana for his Santiago Grisolia fellow. L.E.S.F. also thanks the Carolina Foundation and UPNFM-Honduras for his doctoral grant.El Sayed Shehata Nasr, S.; De La Torre, C.; Santos Figueroa, LE.; Martínez-Máñez, R.; Sancenón Galarza, F.; Orzáez, M.; Costero, AM.... (2015). 2,4-dinitrophenyl ether-containing chemodosimeters for the selective and sensitive 'in vitro' and 'in vivo' detection of hydrogen sulfide. Supramolecular Chemistry. 27(4):244-254. https://doi.org/10.1080/10610278.2014.977286S24425427

    The GB4.0 Platform, an All-In-One Tool for CRISPR/Cas-Based Multiplex Genome Engineering in Plants

    Get PDF
    [EN] CRISPR/Cas ability to target several loci simultaneously (multiplexing) is a game-changer in plant breeding. Multiplexing not only accelerates trait pyramiding but also can unveil traits hidden by functional redundancy. Furthermore, multiplexing enhances dCas-based programmable gene expression and enables cascade-like gene regulation. However, the design and assembly of multiplex constructs comprising tandemly arrayed guide RNAs (gRNAs) requires scarless cloning and is still troublesome due to the presence of repetitive sequences, thus hampering a more widespread use. Here we present a comprehensive extension of the software-assisted cloning platform GoldenBraid (GB), in which, on top of its multigene cloning software, we integrate new tools for the Type IIS-based easy and rapid assembly of up to six tandemly-arrayed gRNAs with both Cas9 and Cas12a, using the gRNA-tRNA-spaced and the crRNA unspaced approaches, respectively. As stress tests for the new tools, we assembled and used for Agrobacterium-mediated stable transformation a 17 Cas9-gRNAs construct targeting a subset of the Squamosa-Promoter Binding Protein-Like (SPL) gene family in Nicotiana tabacum. The 14 selected genes are targets of miR156, thus potentially playing an important role in juvenile-to-adult and vegetative-to-reproductive phase transitions. With the 17 gRNAs construct we generated a collection of Cas9-free SPL edited T-1 plants harboring up to 9 biallelic mutations and showing leaf juvenility and more branching. The functionality of GB-assembled dCas9 and dCas12a-based CRISPR/Cas activators and repressors using single and multiplexing gRNAs was validated using a Luciferase reporter with the Solanum lycopersicum Mtb promoter or the Agrobacterium tumefaciens nopaline synthase promoter in transient expression in Nicotiana benthamiana. With the incorporation of the new web-based tools and the accompanying collection of DNA parts, the GB4.0 genome edition turns an all-in-one open platform for plant genome engineering.This work had been funded by EU Horizon 2020 Project Newcotiana Grant 760331 and PID2019-108203RB-100 Plan Nacional I+D, Spanish Ministry of Economy and Competitiveness. MV-V was recipient of aGeneralitat Valenciana and Fondo Social Europeo post-doctoral grant. JB-O and SS were recipients of FPI fellowships. CP was recipient of a Santiago Grisolia fellowship (Generalitat Valenciana).Vazquez-Vilar, M.; Garcia-Carpintero, V.; Selma, S.; Bernabé-Orts, JM.; Sánchez-Vicente, J.; Salazar-Sarasua, B.; Ressa, A.... (2021). The GB4.0 Platform, an All-In-One Tool for CRISPR/Cas-Based Multiplex Genome Engineering in Plants. Frontiers in Plant Science. 12:1-14. https://doi.org/10.3389/fpls.2021.6899371141

    Relationship between petal abscission and programmed cell death in Prunus yedoensis and Delphinium belladonna

    Get PDF
    Depending on the species, the end of flower life span is characterized by petal wilting or by abscission of petals that are still fully turgid. Wilting at the end of petal life is due to programmed cell death (PCD). It is not known whether the abscission of turgid petals is preceded by PCD. We studied some parameters that indicate PCD: chromatin condensation, a decrease in nuclear diameter, DNA fragmentation, and DNA content per nucleus, using Prunus yedoensis and Delphiniumbelladonna which both show abscission of turgid petals at the end of floral life. No DNA degradation, no chromatin condensation, and no change in nuclear volume was observed in P. yedoensis petals, prior to abscission. In abscising D.belladonna petals, in contrast, considerable DNA degradation was found, chromatin was condensed and the nuclear volume considerably reduced. Following abscission, the nuclear area in both species drastically increased, and the chromatin became unevenly distributed. Similar chromatin changes were observed after dehydration (24 h at 60°C) of petals severed at the time of flower opening, and in dehydrated petals of Ipomoea nil and Petunia hybrida, severed at the time of flower opening. In these flowers the petal life span is terminated by wilting rather than abscission. It is concluded that the abscission of turgid petals in D. belladonna was preceded by a number of PCD indicators, whereas no such evidence for PCD was found at the time of P. yedoensis petal abscission. Dehydration of the petal cells, after abscission, was associated with a remarkable nuclear morphology which was also found in younger petals subjected to dehydration. This nuclear morphology has apparently not been described previously, for any organism

    Structure-based statistical analysis of transmembrane helices

    Get PDF
    Recent advances in determination of the high-resolution structure of membrane proteins now enable analysis of the main features of amino acids in transmembrane (TM) segments in comparison with amino acids in water-soluble helices. In this work, we conducted a large-scale analysis of the prevalent locations of amino acids by using a data set of 170 structures of integral membrane proteins obtained from the MPtopo database and 930 structures of water-soluble helical proteins obtained from the protein data bank. Large hydrophobic amino acids (Leu, Val, Ile, and Phe) plus Gly were clearly prevalent in TM helices whereas polar amino acids (Glu, Lys, Asp, Arg, and Gln) were less frequent in this type of helix. The distribution of amino acids along TM helices was also examined. As expected, hydrophobic and slightly polar amino acids are commonly found in the hydrophobic core of the membrane whereas aromatic (Trp and Tyr), Pro, and the hydrophilic amino acids (Asn, His, and Gln) occur more frequently in the interface regions. Charged amino acids are also statistically prevalent outside the hydrophobic core of the membrane, and whereas acidic amino acids are frequently found at both cytoplasmic and extra-cytoplasmic interfaces, basic amino acids cluster at the cytoplasmic interface. These results strongly support the experimentally demonstrated biased distribution of positively charged amino acids (that is, the so-called the positive-inside rule) with structural data

    A polymeric nanomedicine diminishes inflammatory events in renal tubular cells

    Get PDF
    The polyglutamic acid/peptoid 1 (QM56) nanoconjugate inhibits apoptosis by interfering with Apaf-1 binding to procaspase-9. We now describe anti-inflammatory properties of QM56 in mouse kidney and renal cell models. In cultured murine tubular cells, QM56 inhibited the inflammatory response to Tweak, a non-apoptotic stimulus. Tweak induced MCP-1 and Rantes synthesis through JAK2 kinase and NF-kB activation. Similar to JAK2 kinase inhibitors, QM56 inhibited Tweak-induced NF-kB transcriptional activity and chemokine expression, despite failing to inhibit NF-kB-p65 nuclear translocation and NF-kB DNA binding. QM56 prevented JAK2 activation and NF-kB-p65(Ser536) phosphorylation. The anti-inflammatory effect and JAK2 inhibition by QM56 were observed in Apaf-12/2 cells. In murine acute kidney injury, QM56 decreased tubular cell apoptosis and kidney inflammation as measured by downmodulations of MCP-1 and Rantes mRNA expression, immune cell infiltration and activation of the JAK2-dependent inflammatory pathway. In conclusion, QM56 has an anti-inflammatory activity which is independent from its role as inhibitor of Apaf-1 and apoptosis and may have potential therapeutic relevance.This work was supported by grants from the Instituto de Salud Carlos III (www.isciii.es), FIS: PI07/0020, CP08/1083, PS09/00447 and ISCIII-RETICS REDINREN RD 06/0016; Sociedad Española de Nefrología (www.senefro.org). Álvaro Ucero, Sergio Berzal and Carlos Ocaña supported by Fundacion Conchita Rabago (www.fundacionconchitarabago.net), Alberto Ortiz by the Programa de Intensificación de la Actividad Investigadora in the Sistema Nacional de Salud of the Instituto de Salud Carlos III and the Agencia ‘‘Pedro Lain Entralgo’’ of the Comunidad de Madrid and CIFRA S-BIO 0283/2006 www.madrid.org/lainentralgo) and Adrián Ramos, by FIS (Programa Miguel Servet)

    Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis

    Get PDF
    Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death
    corecore