20 research outputs found
Improved simplicity and practicability in copper-catalyzed alkynylation of tetrahydroisoquinoline
Alkynylation reactions of N-protected tetrahydroisoquinolines have been performed using several different protocols of cross dehydrogenative coupling. Initially, a CuCl-catalyzed method was investigated, which worked well with three different N-protecting groups, namely phenyl, PMP, and benzyl and t-BuOOH as oxidant in acetonitrile as solvent. The peroxide could then be replaced by simple air and acetonitrile for water, leading to an overall very environmentally friendly protocol. Finally, a decarboxylative alkynylation protocol starting from alkynoic acids was also developed using again air as oxidant. This avoids the use of gaseous alkynes in the introduction of short-chained alkyne substituents.Austrian Science Foundation (FWF)911041
Mapping out the key carbonâcarbon bond-forming steps in Mn-catalysed CâH functionalization
Detailed understanding of the mechanistic processes that underpin transition metal-catalysed reactions allows for the rational and de novo development of complexes with enhanced activity, efficacy and wider substrate scope. Directly observing bond cleaving and forming events underpinning a catalytic reaction is non-trivial as the species that facilitate these steps are frequently short-lived and present at low concentrations. Here we describe how the photochemical activation of a manganese precatalyst, [Mn(ppy)(CO)4], results in selective loss of a carbonyl ligand simulating entry into the catalytic cycle for Mn-promoted CâH bond functionalisation. Time-resolved infra-red spectroscopy (ps-ms timescale) allows direct observation of the species responsible for the essential carbon-carbon bond formation step and an evaluation of the factors affecting its rate. The mechanistic information prompted discovery of a new photochemically initiated manganese-promoted coupling of phenylacetylene with 2-phenylpyrindine. This study provides unique insight into the mechanistic pathways which underpin catalysis by an Earth-abundant metal, manganese