14,739 research outputs found
Asteroids in retrograde resonance with Jupiter and Saturn
We identify a set of asteroids among Centaurs and Damocloids, that orbit
contrary to the common direction of motion in the Solar System and that enter
into resonance with Jupiter and Saturn. Their orbits have inclinations I >= 140
deg and semi-major axes a < 15 AU. Two objects are currently in retrograde
resonance with Jupiter: 2006 BZ8 in the 2/-5 resonance and 2008 SO218 in the
1/-2 resonance. One object, 2009 QY6, is currently in the 2/-3 retrograde
resonance with Saturn. These are the first examples of Solar System objects in
retrograde resonance. The present resonant configurations last for several
thousand years. Brief captures in retrograde resonance with Saturn are also
possible during the 20,000 years integration timespan, particularly in the 1/-1
resonance (2006 BZ8) and the 9/-7 resonance (1999 LE31).Comment: 6 pages, 7 figures, accepted for publication in MNRAS Letter
A numerical investigation of coorbital stability and libration in three dimensions
Motivated by the dynamics of resonance capture, we study numerically the
coorbital resonance for inclination180 >=I>=0 in the circular restricted
three-body problem. We examine the similarities and differences between planar
and three dimensional coorbital resonance capture and seek their origin in the
stability of coorbital motion at arbitrary inclination. After we present
stability maps of the planar prograde and retrograde coorbital resonances, we
characterize the new coorbital modes in three dimensions. We see that
retrograde mode I (R1) and mode II (R2) persist as we change the relative
inclination, while retrograde mode III (R3) seems to exist only in the planar
problem. A new coorbital mode (R4) appears in 3D which is a retrograde analogue
to an horseshoe-orbit. The Kozai-Lidov resonance is active for retrograde
orbits as well as prograde orbits and plays a key role in coorbital resonance
capture. Stable coorbital modes exist at all inclinations, including retrograde
and polar obits. This result confirms the robustness the coorbital resonance at
large inclination and encourages the search for retrograde coorbital companions
of the solar system's planets.Comment: accepted for publication in Celestial Mechanics and Dynamical
Astronom
A new data reduction scheme to obtain the mode II fracture properties of Pinus Pinaster wood
In this work a numerical study of the End Notched Flexure (ENF) specimen was performed
in order to obtain the mode II critical strain energy released rate (GIIc) of a Pinus pinaster wood in the RL crack propagation system. The analysis included interface finite elements and a progressive damage
model based on indirect use of Fracture Mechanics.
The difficulties in monitoring the crack length during an experimental ENF test and the inconvenience of performing separate tests in order to obtain the elastic properties are well known. To avoid these
problems, a new data reduction scheme based on the equivalent crack concept was proposed and validated. This new data reduction scheme, the Compliance-Based Beam Method (CBBM), does not require crack measurements during ENF tests and additional tests to obtain elastic properties.FCT - POCTI/EME/45573/200
Quantum Phases in Partially Filled Landau Levels
We compare the energies of different electron solids, such as bubble crystals
with triangular and square symmetry and stripe phases, to those of correlated
quantum liquids in partially filled intermediate Landau levels. Multiple
transitions between these phases when varying the filling of the top-most
partially filled Landau level explain the observed reentrance of the integer
quantum Hall effect. The phase transitions are identified as first-order. This
leads to a variety of measurable phenomena such as the phase coexistence
between a Wigner crystal and a two-electron bubble phase in a Landau-level
filling-factor range , which has recently been observed in
transport measurements under micro-wave irradiation.Comment: 6 pages, 2 figures; to appear in "Proceedings of the 16th
International Conference on High Magnetic Fields in Semiconductor Physics
(SemiMag-16)
Fermi-Bose mixture in mixed dimensions
One of the challenging goals in the studies of many-body physics with
ultracold atoms is the creation of a topological superfluid
for identical fermions in two dimensions (2D). The expectations of reaching the
critical temperature through p-wave Feshbach resonance in spin-polarized
fermionic gases have soon faded away because on approaching the resonance, the
system becomes unstable due to inelastic-collision processes. Here, we consider
an alternative scenario in which a single-component degenerate gas of fermions
in 2D is paired via phonon-mediated interactions provided by a 3D BEC
background. Within the weak-coupling regime, we calculate the critical
temperature for the fermionic pair formation, using Bethe-Salpeter
formalism, and show that it is significantly boosted by higher-order
diagramatic terms, such as phonon dressing and vertex corrections. We describe
in detail an experimental scheme to implement our proposal, and show that the
long-sought p-wave superfluid is at reach with state-of-the-art experiments.Comment: 12 pages, 6 figures, 2 tables and supplementary materia
Retrograde resonance in the planar three-body problem
We continue the investigation of the dynamics of retrograde resonances
initiated in Morais & Giuppone (2012). After deriving a procedure to deduce the
retrograde resonance terms from the standard expansion of the three-dimensional
disturbing function, we concentrate on the planar problem and construct
surfaces of section that explore phase-space in the vicinity of the main
retrograde resonances (2/-1, 1/-1 and 1/-2). In the case of the 1/-1 resonance
for which the standard expansion is not adequate to describe the dynamics, we
develop a semi-analytic model based on numerical averaging of the unexpanded
disturbing function, and show that the predicted libration modes are in
agreement with the behavior seen in the surfaces of section.Comment: Celestial Mechanics and Dynamical Astronomy, in pres
Second Generation of Composite Fermions and the Self-Similarity of the Fractional Quantum Hall Effect
A recently developed model of interacting composite fermions, is used to
investigate different composite-fermion phases. Their interaction potential
allows for the formation of both solid and new quantum-liquid phases, which are
interpreted in terms of second-generation composite fermions and which may be
responsible for the fractional quantum Hall states observed at unusual filling
factors, such as nu=4/11. Projection of the composite-fermion dynamics to a
single level, involved in the derivation of the Hamiltonian of interacting
composite fermions, reveals the underlying self-similarity of the model.Comment: 4 pages, 1 figure; to appear in "Proceedings of the 16th
International Conference on High Magnetic Fields in Semiconductor Physics
(SemiMag-16)", only change with respect to v1: correction in authors line, no
changes in manuscrip
Kounis Syndrome Associated With Selective Anaphylaxis to Cefazolin.
info:eu-repo/semantics/publishedVersio
- …
