We compare the energies of different electron solids, such as bubble crystals
with triangular and square symmetry and stripe phases, to those of correlated
quantum liquids in partially filled intermediate Landau levels. Multiple
transitions between these phases when varying the filling of the top-most
partially filled Landau level explain the observed reentrance of the integer
quantum Hall effect. The phase transitions are identified as first-order. This
leads to a variety of measurable phenomena such as the phase coexistence
between a Wigner crystal and a two-electron bubble phase in a Landau-level
filling-factor range 4.15<nu<4.26, which has recently been observed in
transport measurements under micro-wave irradiation.Comment: 6 pages, 2 figures; to appear in "Proceedings of the 16th
International Conference on High Magnetic Fields in Semiconductor Physics
(SemiMag-16)