One of the challenging goals in the studies of many-body physics with
ultracold atoms is the creation of a topological px+ipy superfluid
for identical fermions in two dimensions (2D). The expectations of reaching the
critical temperature Tc through p-wave Feshbach resonance in spin-polarized
fermionic gases have soon faded away because on approaching the resonance, the
system becomes unstable due to inelastic-collision processes. Here, we consider
an alternative scenario in which a single-component degenerate gas of fermions
in 2D is paired via phonon-mediated interactions provided by a 3D BEC
background. Within the weak-coupling regime, we calculate the critical
temperature Tc for the fermionic pair formation, using Bethe-Salpeter
formalism, and show that it is significantly boosted by higher-order
diagramatic terms, such as phonon dressing and vertex corrections. We describe
in detail an experimental scheme to implement our proposal, and show that the
long-sought p-wave superfluid is at reach with state-of-the-art experiments.Comment: 12 pages, 6 figures, 2 tables and supplementary materia