1,527 research outputs found

    A Comparison of Petri Net Semantics under the Collective Token Philosophy

    Get PDF
    In recent years, several semantics for place/transition Petri nets have been proposed that adopt the collective token philosophy. We investigate distinctions and similarities between three such models, namely configuration structures, concurrent transition systems, and (strictly) symmetric (strict) monoidal categories. We use the notion of adjunction to express each connection. We also present a purely logical description of the collective token interpretation of net behaviours in terms of theories and theory morphisms in partial membership equational logic

    Towards Generic Monitors for Object-Oriented Real-Time Maude Specifications

    Get PDF
    Non-Functional Properties (NFPs) are crucial in the design of software. Specification of systems is used in the very first phases of the software development process for the stakeholders to make decisions on which architecture or platform to use. These specifications may be an- alyzed using different formalisms and techniques, simulation being one of them. During a simulation, the relevant data involved in the anal- ysis of the NFPs of interest can be measured using monitors. In this work, we show how monitors can be parametrically specified so that the instrumentation of specifications to be monitored can be automatically performed. We prove that the original specification and the automati- cally obtained specification with monitors are bisimilar by construction. This means that the changes made on the original system by adding monitors do not affect its behavior. This approach allows us to have a library of possible monitors that can be safely added to analyze different properties, possibly on different objects of our systems, at will.Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech. Spanish MINECO/FEDER project TIN2014-52034-R, NSF Grant CNS 13-19109

    State space c-reductions for concurrent systems in rewriting logic

    Get PDF
    We present c-reductions, a state space reduction technique. The rough idea is to exploit some equivalence relation on states (possibly capturing system regularities) that preserves behavioral properties, and explore the induced quotient system. This is done by means of a canonizer function, which maps each state into a (non necessarily unique) canonical representative of its equivalence class. The approach exploits the expressiveness of rewriting logic and its realization in Maude to enjoy several advantages over similar approaches: exibility and simplicity in the definition of the reductions (supporting not only traditional symmetry reductions, but also name reuse and name abstraction); reasoning support for checking and proving correctness of the reductions; and automatization of the reduction infrastructure via Maude's meta-programming features. The approach has been validated over a set of representative case studies, exhibiting comparable results with respect to other tools

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify and analyse a prominent example of adaptive system: robot swarms equipped with obstacle-avoidance self-assembly strategies. The analysis exploits the statistical model checker PVesta

    A Linear Analysis of g-Jitter Effects on Viscous Cylindrical Liquid Bridges

    Get PDF
    This paper deals with the dynamics of isothermal, axisymmetric, cylindrical liquid columns held by capillary forces between two circular, concentric, solid disks; in particular, it deals with the dynamic response of the bridge to an excitation consisting of a small change in the value of the microgravity level. The problem has been solved by using a linearized one‐dimensional Cosserat model, which includes viscosity effects, and with the axial velocity considered as constant in each section of the liquid bridge. The analysis has been performed by using the Laplace transform, and the time variation of both the axial velocity field and the liquid bridge interface have been obtained

    Non-Linear Response of a Liquid Bridge to a Sinusoidal Acceleration under Microgravity

    Get PDF
    An experiment was performed aboard a sounding rocket on a long cylindrical liquid bridge, aiming at discerning the real transfer function of this liquid configuration to small acceleration loads, quantified by the liquid free-surface deformation divided by the axially imposed acceleration. The results were, however, in great discrepancy with theoretical predictions, showing asymmetric jumps of high amplitude in the evolution of the radial deformation of the liquid bridge, instead of a symmetric sinusoidal radial deformation (axisymmetry was preserved). It has been found now that a non-linear dynamic model perfectly explains this unexpected behaviour

    Evaluating the performance of model transformation styles in Maude

    Get PDF
    Rule-based programming has been shown to be very successful in many application areas. Two prominent examples are the specification of model transformations in model driven development approaches and the definition of structured operational semantics of formal languages. General rewriting frameworks such as Maude are flexible enough to allow the programmer to adopt and mix various rule styles. The choice between styles can be biased by the programmer’s background. For instance, experts in visual formalisms might prefer graph-rewriting styles, while experts in semantics might prefer structurally inductive rules. This paper evaluates the performance of different rule styles on a significant benchmark taken from the literature on model transformation. Depending on the actual transformation being carried out, our results show that different rule styles can offer drastically different performances. We point out the situations from which each rule style benefits to offer a valuable set of hints for choosing one style over the other

    One-dimensional dynamics of nearly unstable axisymmetric liquid bridges

    Get PDF
    A general one-dimensional model is considered that describes the dynamics of slender, axisymmetric, noncylindrical liquid bridges between two equal disks. Such model depends on two adjustable parameters and includes as particular cases the standard Lee and Cosserat models. For slender liquid bridges, the model provides sufficiently accurate results and involves much easier and faster calculations than the full three-dimensional model. In particular, viscous effects are easily accounted for. The one-dimensional model is used to derive a simple weakly nonlinear description of the dynamics near the instability limit. Small perturbations of marginal instability conditions are also considered that account for volume perturbations, nonequality of the supporting disks, and axial gravity. The analysis shows that the dynamics breaks the reflection symmetry on the midplane between the supporting disks. The weakly nonlinear evolution of the amplitude of the perturbation is given by a Duffing equation, whose coefficients are calculated in terms of the slenderness as a part of the analysis and exhibit a weak dependence on the adjustable parameters of the one-dimensional model. The amplitude equation is used to make quantitative predictions of both the (first stage of) breakage for unstable configurations and the (slow) dynamics for stable configurations

    An experimental analysis of the instability of non-axisymmetric liquid bridges in a gravitational field

    Get PDF
    he stability limits of nonaxisymmetric liquid bridges between equal in diameter, coaxial disks have been determined experimentally. Experiments have been performed by working with very small size liquid bridges. The experimental setup allows any orientation of the liquid bridge axis with respect to the local gravity vector acceleration. By appropriately orienting the liquid bridge axis, the influence on the stability limits of both the lateral and the axial component of the acceleration acting on the liquid bridge has been investigated
    corecore