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Abstract An experiment was performed aboard a sound
ing rocket on a long cylindrical liquid bridge, aiming at 
discerning the real transfer function of this liquid config
uration to small acceleration loads, quantified by the liquid 
free-surface deformation divided by the axially imposed 
acceleration. The results were, however, in great discrep
ancy with theoretical predictions, showing asymmetric 
jumps of high amplitude in the evolution of the radial 
deformation of the liquid bridge, instead of a symmetric 
sinusoidal radial deformation (axisymmetry was pre
served). It has been found now that a non-linear dynamic 
model perfectly explains this unexpected behaviour. 

1 
Introduction 
A liquid bridge is a simplified model of more complex 
fluid configurations, as in the floating zone technique of 
crystal growth, and consists of an isothermal mass of li
quid with constant properties (density p, surface tension a 
and kinematic viscosity v) held by surface tension forces 
between two parallel and coaxial circular disks of the same 
radii R, placed at a distance L apart, as sketched in Fig. 1. 
The liquid bridge interface, whose deformation is the 
subject of this research, is anchored to both disks, with the 
two contact lines solid-liquid-air being circumferences 
pinned to the edges of the disks. An axial sinusoidally 
varying acceleration of the discs g (along the axis of 
symmetry of the liquid column) constitutes the excitation 
applied. 

Free-surface equilibrium shapes and stability limits of 
the liquid bridge configuration are defined by the follow
ing dimensionless parameters: the slenderness A—L/(2R), 
the dimensionless volume of liquid V=V*/(nR2L), where 
V* stands for the physical volume, and the axial Bond 
number B=pgR2/o (neglecting the density of the sur-
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rounding media). For a weightless right circular-cylinder 
liquid bridge, the well-known Rayleigh stability limit 
holds: the liquid column becomes unstable when its length 
is larger than its circumference (A>7i), and beyond this 
limit the liquid column breaks in two drops by asymmetric 
necking. 

The response of a liquid bridge to several mechanical 
stimuli has been theoretically predicted and experimen
tally verified in terrestrial laboratories with small 
millimetric bridges and with larger bridges in a Plateau-
tank configuration (surrounding the bridge by an immis
cible liquid of nearly the same density), as well as on space 
platforms. However, in some space experiments, puzzling 
results were obtained, attributable to the unavoidable 
mechanically noisy ambient of a very light and very active 
manned orbiting vehicle (Martinez et al. 1995). 

To clarify those unexplained results, the experiment 
here studied was executed (aboard sounding rocket Texus-
33), aiming at obtaining a precise record of the interface 
deformation caused by the axial acceleration imposed, to 
check it with available analytical models: linear and static, 
with corrections for non-linear and for dynamic effects 
(Martinez et al. 1996). 

However, in this experiment, because of unforeseen 
circumstances, important dynamic effects were excited, 
and the liquid bridge started to oscillate in an unexpected 
way, not satisfactorily explained in a previous work 
(Martinez et al. 1996). The experiment is revisited in this 
paper, and the experimental dynamic behaviour is 
analysed by using a one-dimensional model for the liquid 
bridge dynamics, based on the Cosserat model already 
used in liquid bridge dynamics, which retains most 
dynamics and non-linear effects at a much lower cost than 
full three-dimensional models. 

The study of non-linear dynamics and breakage of 
liquid bridges was started more than 20 years ago, initially 
using an inviscid, one-dimensional slices model. This 
initial model was developed from one used in capillary jet 
studies, just modifying the boundary condition (Meseguer 
1983; Rivas and Mese guer 1984; Meseguer and Sanz 1985). 
Sirignano and Mehring (2000) have recently published a 
wide review of the theories commonly used in liquid jet 
breaking, and an historical review of the most represen
tative publications concerning the breaking of liquid 
bridges can be found in Zhang et al. (1996). These reviews 
should be completed with some recent papers (Padday 
et al. 1997; Yildirim and Basaran 2001, Montanero 2003), 
which are mostly devoted to the breaking of stretching 
liquid bridges. It has to be stressed that one-dimensional 
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Fig. 1. Sketch of a liquid bridge in air, held between two 
connected solid discs being oscillated. Oscillations start at 
bottom dead centre (BDC). A liquid bridge cell; B liquid bridge; 
C fix rod; D crank-shaft mechanism. Viewing CCD-camera moves 
with the cell 

models are suitable for explaining the liquid bridge 
dynamics provided the liquid bridge slenderness is high 
enough, as happens in this case where it is A>2.83. 

Experiment description 
The goal of this experiment was to check the static 
response of the liquid column acting as an accelerometer, 
by subjecting it to a calibrated microgravity acceleration 
(100±1 |ig, i.e. 10~3 m/s2). This stimuli is well above the 
expected uncontrolled g-jitters of the Texus platform 
(known to be below 10 ug from previous rocket flights and 
measured also during this experiment), but well below the 
expected breakage by capillary instability of the liquid 
bridge selected, at some 200 ug (Martinez et al. 1996). 

A picture of the hardware used in the experiment is 
shown in Fig. 2; it consists of the following main elements 
(see also the sketch in Fig. 1): 

- A liquid bridge cell, where a long (L=85 mm) 
column of silicone oil (AK-10, Wacher Chemie, 
Munich, Germany, with density p=920 kg/m3, kinematic 
viscosity v=10T0~6 m2/s and oil-air interface tension 3. 

Fig. 2. Experimental equipment (Texus 33 TEM-09 liquid bridge 
cell). A rocket module structure; B liquid reservoir; C liquid 
bridge cell (without liquid); D electronics box; E CCD camera; 
F lens; G upper disc; H mirror at 45° 

cr=0.02 N/m), is established between two equal coaxial 
metal discs (R=15 mm in radius), to the edge of which 
the liquid is naturally anchored. The liquid volume 
injection mechanism takes care to adjust the injected 
volume to that corresponding to a circular cylinder of 
the same length and same radius. 

- A liquid bridge visualisation set-up with a CCD camera, 
a mirror and a background diffuse illumination, 
including a raster for reference in the pictures. 

- A liquid bridge module, fixed to the sounding rocket, 
inside which the liquid bridge cell as a whole (including 
discs, reservoir, mirror and camera) is made to oscillate 
axially along the axis of the rocket (coincident with the 
axis of the liquid bridge), by means of the crank-shaft 
mechanism depicted in Fig. 1. 

The experimental sequence, described in more detail in 
Martinez et al. (1996), is: 

1. 

2. 

Formation of the liquid bridge during the first 
minute after the sounding rocket attains microgravity 
(ballistic motion without air drag). 
Idle period of 20 s to observe the initial decay of 
disturbances owing to the filling process; although it 
was known that the half damping time is t1/2~35±5 s, 
a shorter period was chosen because this decay 
period is followed by another transient event (the 
start of oscillations) that requires further decay time. 
Five oscillation cycles of 45 s period each. 



4. Idle period of the remaining 1 minute of rocket flight, 
to look at the decay, before rocket re-entry and fall. 

The response of the liquid bridge to small accelerations 
can be fully characterised by its deformation amplitude 
because all deformed shapes approach sinusoidal shapes 
(the first eigenmode). As the experiment aimed at 
measuring very small accelerations, the sensitivity had to 
be very large (the slenderness A has to be near the 
Plateau-Rayleigh stability limit of A—n), but it is 
well-known that very sensitive systems are also very 
unstable and a compromise must be reached (A=2.83, 
corresponding to A/n—0.9, was selected for the 
experiment). 

The crank-shaft mechanism implemented, produced a 
sinusoidal displacement of the liquid cell, zcea(t) (see 
Fig. 1), with the following kinematics: 
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with measured values from the hardware (a linear poten
tiometer between rocket and fluid cell) of 
Ax=49.8±0.2 mm, A2=4.1±0.2 mm and T=45.2±0.2 s. No
tice that the crank-shaft mechanism only adds even har
monics (A2, A4, A6, ...) to the first one (Ax). In our case, 
from crank-shaft kinematics, the neglected (l-cos(87it/T)) 
term in (1) has a theoretical value of A4=0.03 mm that fell 
below the design resolution. 

Fluid-cell acceleration, relative to the rocket (that can 
be assumed an inertial reference frame because of its 
relative mass and the overall ballistic trajectory), is also 
redundantly measured from the liquid bridge images, 
since a solid rod fixed to the rocket module is in the 
field of view (to the travelling camera, it is as if the rod 
were moving up and down instead of the liquid bridge 
cell; see the sketch in Fig. 1). The matching of the 
two-term crank-shaft motion law (1) deduced from 
potentiometer records with the actual rod displacement 
and acceleration measured from the images is perfect 
(±0.1 mm in amplitude and ±0.1 s in time), thus the 
acceleration applied to the liquid in liquid-cell axes is: 
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with a1=A1(27i/T)2=0.96±0.02 mm/s2, a2=A2(47i/ 
T)2=0.32±0.02 mm/s2 and T=45.2±0.2 s, or, in non-
dimensional terms: 
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with 5x=0.010±0.001 and 52=0.0033±0.0003. 

(3) 

Analytical background 
To compare the theoretical predictions with the 
experimental results, a modal analysis is done, in order to 
find a first approximation to the oscillating shape, 

R(z, t) . . . nz 
- ^ = l + fl(f)Sin-, (4) 

i.e. we aim at finding the liquid deformation amplitude, 
a(t), coincident with the radial deformation at one quarter 
of the liquid column length R(A/2,t)/R-l—a(t), in terms of 
the non-dimensional acceleration applied, B(t). A 
non-linear quasi-static analysis, as described in Martinez 
et al. (1996), could not fully explain the observed 
behaviour of the liquid, and dynamic models had to be 
used. 

But neither the linear dynamic spring-type simulation 
developed in Martinez et al. (1996), namely: 

d2a(t) 2ln2da(f) 
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(tin being the half-time for viscous decay known from 
previous experiments with the same geometry and fluid, 
T the forcing period and K a known constant from the 
static analysis), gave satisfactory results Trying to 
elucidate possible hardware uncertainties, in Martinez 
et al. (1996), an additional third harmonic in the 
displacement imposed (1) was introduced in the load term 
B(t) of (5) with a value of A3=0.25 mm empirically found 
by best fitting the actual liquid deformation, as shown in 
Martinez et al. (1996). This artificial input could not 
satisfactory be attributed to any conceivable load either 
intentionally applied or caused by platform noise. 
Fortunately, an improved analytical model has been used 
(Eq. 6) that perfectly predicts the real response, showing 
that the third harmonic experimentally found in the radial 
amplitude, does not come from the load B(t) in (6), but 
from the non-linear dynamic response of the liquid to the 
actual two-harmonic excitation. 

The theoretical model that really matches the observed 
behaviour is, after Meseguer et al. (1994): 

m 
A2a(t) 

At2 wiC —^-L + Xa(t) 
At 

l<tf=B(t), (6) 

with m—25/8 being an analytical non-dimensional 
inertia-term coefficient (deduced considering the 
simplified inner velocity field given by the so-called 
Cosserat model), C=Ohm=v(p/(aR))lh=0.0l75 the square 
root of the Ohnesorge number accounting for viscous 
dissipation (with v=10-10~6 m2/s, p=920 kg/m3, 
cr=0.020 N/m, #=0.015 m), with A=A/n-l being a 
normalised slenderness having a small value and B(t) 
being the non-dimensional forcing acceleration as before. 
The actual values from the two last coefficients (A/71-1 and 
3/4) can be deduced just by making an analysis of the 
static equilibrium of the liquid bridge retaining not only 
the first but the following non-zero term). Equation 6 is a 
Duffing's equation, typical of soft springs (the cubic term 
softens the linear rigidity, introducing the non-linear 
effects). 

4 
Results 
The results presented here come from the digitisation of 
the on-board recorded VHS video tape, to a 320x240 pixel 
map of 16 bit grey-scale, in a sequence of 3,600 images, 
with a 0.1 s time-span (the original video has 30 frames 



Fig. 3. a An actual image of the liquid bridge (amphora-shape 
outline over a white background), b Automatic edge extraction 

per second), and analysed with Matlab software (The 
MathWorks Inc., Natick, MA, USA), that has been used to 
make all the computations and plots from the image 
sequence; in particular, the edges of the liquid bridge are 
automatically extracted using the Canny algorithm, which 
finds edges by looking for local maxima of the gradient of 
the grey-level matrix, using the derivative of a Gaussian 
filter. An actual image and its outline (automatic edge 
detection) are presented in Fig. 3. It might be noticed that 
the liquid column and the raster appear at a different scale; 
this is because of the conical perspective (looking from 
420 mm far to an 86 mm liquid column length at the 
object plane, the raster being 48 mm further behind). 

As mentioned above, because of the sinusoidal shape 
deformation (4), the response of the liquid bridge can be 
fully characterised by the deformation amplitude at one 
quarter of its length (z=A/2), a(t)=R(A/2,t)/R-l, but, to 
minimise uncertainty, instead of just this one radius 
measure local fitting, as performed in Martinez et al. 
(1996), here a(t) is computed by fitting the whole outer 
shape in each image, R(z,t), by a least-square technique 
explained below. 

To measure the departure (as a function of time) of 
the liquid volume relative to a perfect cylinder, 
v=V*/(7iR2L)-l, expected to be nil, one may just measure 
the radial departure at mid-length and apply a known 
linear theoretical relation (Martinez et al. 1996); R(0,t)/ 
.R=l+0.92v(t) for A=2.83. But again, the uncertainty is 

smaller (goes down from 1 to 0.1%) if we make the inte
gration of all liquid discretised slices and compute the 
volume deviation by: 

, N TR2(zi, t)Az{ 
y W = R2L - 1 ' W 

the result being shown in Fig. 4. Similarly, amphora-type 
amplitude deformations, i.e. a(t) in (4), may be 
computed from a local measure of R(A/2,t)/R-l, 
but the uncertainty is of 1% and a better fit is obtained 
by minimising the shape distance, i.e. 
'L(R(z,t)-R(zht))

2^mm, that yields: 

«(,) = £ M ^ . (8, 
with the result shown in Fig. 4. The lateral non-axisym-
metric (comb-like) deformation, Y(z,t), of the liquid bridge 
midway between the discs, normalised with the disc radius, 
Y(0,t)/R (not sketched in Fig. 1), is also presented in Fig. 4, 
to give an idea of how well axial symmetry was preserved 
during the experiment and to show a small cross-coupling 
with the forcing frequency applied to the cell. 

From Fig. 4, one can see a constant volume process 
(with a 0.3% uncertainty in volume), a similar behaviour 
for the combing (centrifugal bending) of the centre line 
(but with an unexplained 0.4% amplitude waving at the 
excitation frequency, maybe caused by some imperfection 
in the applied stimuli), and an amphora-type radial 
deformation a(t) in (4), evolving with the following 
characteristics: 

1. The transients (both, those coming from the injection 
manoeuvre and those coming from the abrupt start 
of the oscillation) disappear after the first three cycles 
as expected. 

2. After oscillation suddenly stops, unexpectedly the 
transients are almost non-existent. This is a most 
remarkable fact and contrary to expectations, but 
successfully explained below. 

3. The time-averaged shape deformation amplitude 
during the whole microgravity period in this experi
ment corresponds to an equivalent steady-state Bond 
number smaller than 1 ug, in contrast with averaged 
values measured on Spacelab experiments (70 ug in 
Spacelab-1 and 5 ug in Spacelab-Dl). It might be the 
platform- and mission-dependent effect. 

The results of the non-linear dynamic simulation (6), 
with the two-term excitations (2), are presented in Fig. 5 in 
comparison with the experimental results, i.e. the 
non-dimensional stimuli B(t), the experimental response 
a(t) (dots), the non-linear dynamic simulation response 
(heavy solid line) and the linear dynamic simulation 
response (thin solid line). It can be seen that the linear 
dynamic simulation does not reproduce qualitatively all 
features of the experimental results, whereas the non-lin
ear simulation does. Quantitatively, the non-linear 
simulation agrees with experimental results everywhere 
except in the final free dumped oscillations where a 
readjustment in the initial conditions of the simulation 
would lead to a better match. 
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By getting rid of the transients in the three first cycles, a 
Fourier analysis of the last two excited cycles (those shown 
in Fig. 5) is carried out and presented in Fig. 6, where the 
two harmonics in the excitation B(t) and the three 
harmonics in the response a(t) clearly show up in the 
frequency domain (amplitude spectra B and a, and phase 
spectra 0 5 and Oa are also shown for completeness). 
Notice how perfectly periodic the liquid response is in 
these two cycles (higher harmonics nearly zero). 
Frequencies have been made dimensionless with the basic 
frequency applied fo=l/T with T=45.2 s. 

300 320 340 360 f r . 380 
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Fig. 5. Simulated time response, i.e. radial deformation at one 
quarter of the column length, a(f), owing to the two-term load, 
g(t)y in (2). Dots correspond to experimental results, heavy solid 
line to the non-linear dynamic simulation, thin solid line to the 
linear dynamic simulation, and dashed line to applied excitation, 
B(t)=pg(t)R2/a (non-dimensional acceleration). Only the last two 
excited cycles (nearly steady) and the decay are shown 
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Fig. 4. Liquid bridge response obtained 
from whole shape image analysis, for the 
period of constant bridge length (i.e. the 
five excited cycles and the leading and 
trailing idle periods): non-dimensional 
excess volume, v(t)=V*(t)/(nR2L)-ly 
non-dimensional radial departure from 
the cylinder, a(t)=R(A/2,t)/R-l, and 
off-axis comb deformation at the centre, 
relative to the undisturbed radius, r(0,f)/ 
R, vs. flight time t (origin at rocket lift-off) 

The final results may be summarised as follows: 

The non-linear dynamic simulation here performed, 
reasonably matches the real liquid response, contrary to 
the linear dynamics or any static simulation. 
The maximum deformation amplitude in the last cycle 
is amax=0.205 (at £=368 s rocket flight time, Fig. 5) that 
happens to be above the static stability limit for that 
slenderness, which is a amaX)Static=0.187 according to full 
numerical computation. It is just the dynamic 
stabilisation, i.e. the fact that the force is already 
decreasing when the deformation is maximum (Fig. 5), 
which avoids the breakage of the liquid bridge—a most 
fortunate circumstance for the experiment. Otherwise, 
the liquid bridge would have already broken apart 
during the first transient cycles. Further simulations 
using (6) with a slenderness A=2.85 instead of the 
actually applied A=2.83 (holding all other parameters 
the same), already predicts the breakage of the liquid 
bridge, whereas a simulation with A=2.80 greatly 
decrease the response amplitude. 
When the liquid-cell acceleration was abruptly stopped, 
the liquid deformation profile nearly approached zero 
value with zero slope (Fig. 5), i.e. the shape was a 
cylinder with nearly quiescent internal motion, what 
gave way to the abrupt decrease in amplitude 
deformation onwards. During the final decay, the phase 
difference between experiment and simulation, is 
because the simulation approaches this stop point 
slightly from above in Fig. 5, whereas the real liquid 
response approaches it slightly from the bottom, a 
minor imperfection in the simulation. 
The final transients, although of small amplitude, fully 
confirm previous data for the natural frequency of this 
fluid configuration (Sanz 1985), namely an eigen 
frequency of /e=0.068±0.002 Hz, in our case, 
corresponding to a natural period of Te=14.8±0.3 s and 
dumping time (where the amplitude reduces to a half) 
of some T1/2=35±5 s). 
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Fig. 6. Fourier analysis of input signal 
(dimensional acceleration excitation 
applied, B(t)) and output signal (maxi
m u m radial shape deformation, a(t)=R(A/ 
2,£)AR-1). For both signals, the time series 
(B(t) and a(f)), amplitude spectrum (B 
and a), and phase spectrum ( O B and O J 
are shown. Frequencies have been made 
dimensionless with the basic frequency 
applied f0=l/T with T=45.2 s. Only the 
last two excited cycles (nearly periodic) 
are analysed 

Conclusions 
The objective of the experiment was to check a concrete 
controversial quantified value: the amplitude gain of a 
long liquid bridge acting as a "microgravity accelerom-
eter". The configuration used was the same as in pre
vious trials, to minimise the parameter space. The 
sensitivity of the objective function to the different 
parameters was analysed in order to check for stability 
of the target and data redundancies were adopted to 
minimise uncertainties. 

The basic aim was to verify the static response by 
means of a very slow sinusoidal excitation. The main result 
is, however, that dynamic effects were dominant. A 
previous analysis, including dynamic effects, tried to 
explain the discrepancy by introducing some unknown 
excitation to look for afterwards, because neither the small 
dynamic effect, nor the small non-linear effect could 
explain the results. 

The present analysis has finally succeeded in explaining 
the discrepancy between theory and practice. The answer 
is that although both effects were small, their combination 
was not small. The two effects that reinforced each other 
are the following: 

1. Because of the large deformation chosen to increase 
sensitivity, a small non-linear effect appears, less than 
10% of the linear deformation, but precisely in the third 
power of the response amplitude. This cubic effect 
yields a third harmonic term in the dynamic response, 
which already causes the deformation to significantly 
deviate from the expected response (some 30%) 
because the third harmonic is close to the eigen 
frequency of the liquid bridge. 

2. The additional second harmonic excitation caused by 
the crank-shaft mechanism implemented, although only 
adding an 8% to the displacement amplitude, adds a 

33% amplitude in acceleration relative to the first 
harmonic. This is a sizeable departure from a simple 
cosine load, but without any further complications in 
the linear range, a perfect symmetrical response would 
be produced, if not for its dynamic effect. 

The combination of the dynamic effects of the second 
harmonic excitation with the non-linear effects chosen to 
increase the sensitivity, finally yielded huge dynamic 
humps, more than 100% larger than expectations. 

A simple model has been found here that perfectly 
simulates the real behaviour of the liquid bridge in 
this unique experiment. This can be applied with more 
confidence to make better predictions in future 
experiments. 

Another striking fact corroborating the assertion that 
dynamic effects were dominant, and the validity of the 
present model, is the abrupt end of oscillations after the 
excitation ceases. The maximum measured amplitude 
deformation of the liquid shape is beyond the static 
stability limit. 
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