
Evaluating the performance of model
transformation styles in Maude?

Roberto Bruni1 and Alberto Lluch Lafuente2

1 Department of Computer Science, University of Pisa, Italy
2 IMT Institute for Advanced Studies Lucca, Italy

Abstract. Rule-based programming has been shown to be very successful
in many application areas. Two prominent examples are the specification
of model transformations in model driven development approaches and
the definition of structured operational semantics of formal languages.
General rewriting frameworks such as Maude are flexible enough to
allow the programmer to adopt and mix various rule styles. The choice
between styles can be biased by the programmer’s background. For
instance, experts in visual formalisms might prefer graph-rewriting styles,
while experts in semantics might prefer structurally inductive rules. This
paper evaluates the performance of different rule styles on a significant
benchmark taken from the literature on model transformation. Depending
on the actual transformation being carried out, our results show that
different rule styles can offer drastically different performances. We point
out the situations from which each rule style benefits to offer a valuable
set of hints for choosing one style over the other.

1 Introduction

Many engineering activities are devoted to manipulate software artifacts to
enhance or customize them, or to define their possible ordinary evolutions and
exceptional reconfigurations. The concept of model as unifying software artifact
representation has been promoted as a means to facilitate the specification of
such activities in a generic way. Many dynamic aspects can be conceived as model
transformations : e.g. architectural reconfigurations, component adaptations, soft-
ware refactorings, and language translations. Rule-based specifications have been
widely adopted as a declarative approach to enact model-driven transformations,
thanks to the solid foundations offered by rule-based machineries like term [1]
and graph rewriting [2].

Recently we have investigated the possibility to exploit the structure of mod-
els to enhance software description and to facilitate model transformations [3,
4]. Indeed, many domains exhibit an inherently hierarchical structure that can
be exploited conveniently to guarantee scalability. We mention, among others,
nested components in software architectures and reflective object-oriented sys-
tems, nested sessions and transactions in business processes, nested membranes

? Work supported by the EU Project ASCENS and the Italian MIUR Project IPODS.

2 R. Bruni, A. Lluch Lafuente

in computational biology, composition associations in UML-like modeling frame-
works, semi-structured data in XML-like formats, and so on. Very often such
layering is represented in a plain manner by overlapping the intra- and the
inter-layered structure. For instance, models are usually formalised as flat object
configurations (e.g. graphs) and their manipulation is studied with tools and
techniques based on rewriting theories that do not fully exploit the hierarchical
structure. On the other hand, an explicit treatment of the hierarchical structure
for specifying and transforming model-based software artifacts is possible. As a
matter of fact, some layering structures (like composition relations in UML-like
languages) can be conveniently represented by an explicit hierarchical structure
enabling then hierarchical manipulations of the resulting models (see e.g. [3, 4]).

We have investigated such issues in previous work [3] proposing an approach
analogous to the russian dolls of [5, 6], where objects can be nested within
other objects. In this view, structured models are represented by terms that
can be manipulated by means of term-rewrite techniques like conditional term
rewriting [1]. In [3] we compared the flat representation against the nested one,
showing that they are essentially equivalent in the sense that one can bijectively
pass from one to the other. Each representation naturally calls for different rule
styles and the comparison in [3] mainly addressed methodological aspects, leaving
one pragmatical issue open: how to decide in advance which approach is more
efficient for actually executing a model transformation?

We offer an answer to this question in this paper. We have selected two
prominent approaches to model transformation. The first one is archetypal of the
graph-transformation based model-driven community and follows the style of [7].
The second one is quite common in process calculi and goes along the tradition
of Plotkin’s structural operational semantics, as outlined in [3]. Both approaches
can be adopted in flexible rule-based languages like Maude [8] (the rewriting logic
based language and framework we have chosen). In order to obtain significant
results we have implemented three test cases widely used in the literature: the
reconfiguration of components that migrate from one location to another one,
the transformation of class diagrams into relational schemas, and the refactoring
of class diagrams by pulling up attributes. As a byproduct we offer a novel
implementation of these three classical transformations based on conditional
rules. Indeed, such style of programming model transformations has not been
proposed by other authors, as far as we know.

Our experimental results stress the importance of choosing the right trans-
formation style carefully to obtain the best possible performance. We point out
some features of the examples that impact the performance of each rule format,
thus providing the programmer with a set of valuable guidelines for programming
model transformations in expressive rule-based frameworks like Maude.

Synopsis. § 2 presents a graph-based algebraic representation of models as
nested object collections and describes rewrite rule styles for implementing model
transformations in Maude. § 3 presents some enhancements that can be applied
to the transformation styles. § 4 describes our benchmark. § 5 presents the
experimental results. § 6 concludes the paper.

Evaluating the performance of model transformation styles in Maude 3

2 Preliminaries

In this section we illustrate the two key model transformation paradigms
and the Maude notation we shall exploit in the rest of the paper over a basic
example of transformation, namely from trees to list. A classical approach would
provide ad-hoc data structures for trees and lists and an ad-hoc algorithm for
implementing the transformation. Model driven approaches, instead, consider a
common representation formalism for both data structures and a generic transfor-
mation procedure that acts on such formalism. In our setting, the representation
formalism for models are collections of attributed objects and the transformation
procedure is based on rewrite rules.

The Maude language already provides some machinery for this purpose, called
object-based configurations [8], which we tend to follow with slight modifications
aimed to ease the presentation. More precisely we represent models as nested
object collections [3] (following an idea originally proposed in [5] and initially
sketched in [6]), which can be understood as a particular class of attributed,
hierarchical graphs. We then implement transformations as sets of rewrite rules.

Rewriting Logic and Maude. Maude modules describe theories of rewriting
logic [1], which are tuples 〈Σ,E,R〉 where Σ is a signature, specifying the basic
syntax (function symbols) and type machinery (sorts, kinds and subsorting) for
terms, e.g. model descriptions; E is a set of (possibly conditional) equations,
which induce equivalence classes of terms, and (possibly conditional) membership
predicates, which refine the typing information; R is a set of (possibly conditional)
rules, e.g. model transformations.

The signature Σ and the equations E of a rewrite theory form a membership
equational theory 〈Σ,E〉, whose initial algebra is denoted by TΣ/E . Indeed, TΣ/E
is the state space of a rewrite theory, i.e. states (e.g. models) are equivalence
classes of Σ-terms modulo the least congruence induced by the axioms in E
(denoted by [t]E or t for short). Sort declarations takes the form sort S and
subsorting (i.e. subtyping) is written subsort S < T. For instance, the sort of
objects (Obj) is a subsort of configurations sort Configuration as declared by
subsort Obj < Configuration.

Operators are declared in Maude notation as op f : TL -> T [As] where
f is the operator symbol (possibly with mixfix notation where underscores
stand for argument placeholders), TL is a (possibly empty, blank separated) list
of domain sorts, T is the sort of the co-domain, and As is a set of equational
attributes (e.g. associativity, commutativity). For example, object configurations
(sort Configuration) are constructed with operators for the empty configuration
(none: -> Configuration), single objects (via subsorting) or the union of con-
figurations, denoted with juxtaposition (: Configuration Configuration

-> Configuration [assoc comm id:none]), declared to be associative, com-
mutative and to have none as its identity operator (i.e. they are multisets).

Each object represents an entity and its properties. Technically, an object is
defined by its identifier (of sort Oid), its class (of sort Cid) and its attributes (of

4 R. Bruni, A. Lluch Lafuente

sort AttSet). Objects are built with an operation < : | > with functional
type Oid Cid AttSet -> Obj. Following Maude conventions, we shall use quoted
identifiers like ’a as object identifiers, while class identifiers will be defined by
ad-hoc constructors. In our running example we use the constants Node and Item

of sort Cid to denote the classes of tree nodes and list items, respectively.
The attributes of an object define its properties and relations to other ob-

jects. They are basically of two kinds: datatype attributes and association ends.
Datatype attributes take the form n: v, where n is the attribute name and v

is the attribute value. For instance, in our running example we shall consider a
natural attribute value (sort Nat), representing the value of a node or item. A
node with identifier ’a and value 5 is denoted by < ’a : Node | value: 5 >.

Relations between objects can be represented in different ways. One typical
approach is to use a pair of references (called association ends in UML terminol-
ogy) for each relation. So if an object o1 is in relation R with object o2 then o1

is equipped with a reference to o2 and vice versa. In our case this is achieved
with attributes of the form R: O2 and opp(R): O1 where R indicates the relation
name and O1, O2 are sets of object identifiers (sort OidSet). Association ends
of the same relation within one object are grouped together (hence the use of
identifier sets as domain of association attributes). In our example we have two
relations left and right between a node and its left and right children, and
one relation next between an item of the list and the next one. Clearly, the
opposite relations of left, right and next are the parent and previous relations.
As an example of a pair of references consider a node < ’a : Node | value: 5

, left: ’b > and its son < ’b : Node | value: 3 , opp(left): ’a >. Of
course an object can be equipped with any number of attributes. Actually, the
attributes of an object form a set built out of singleton attributes, the empty set
(none) and union set (denoted with ,).

The following simple configuration represents a tree with three nodes.

< ’a : Node | value: 5 , left: ’b , right: ’c >

< ’b : Node | value: 3 , opp(left): ’a >

< ’c : Node | value: 7 , opp(right): ’a >

Operation << >> : Configuration -> Model wraps a configuration into
a model.

Functions (and equations that cannot be declared as equational attributes)
are defined by a set of confluent and terminating conditional equations of the
form ceq t = t’ if c, where where t, t’ are Σ-terms, and c is an application
condition. When the application condition is vacuous, the simpler syntax eq t =

t’ can be used. For example, an operator op size : Configuration -> Nat

for measuring the number of objects in a configuration is inductively defined
by equations eq size(none) = 0 and eq size(O C) = 1 + size(C) (with O, C
being variables of sort Obj, Configuration, respectively). Roughly, an equational
rule can be applied to a term t’’ if we find a match m (i.e. a variable substitution)
for t at some place in t’’ such that m(c) holds (i.e. c after the application of the
substitution m evaluates to true). The effect is that of substituting the matched
part with m(t’). For example, calculating the size of the above tree is done by

Evaluating the performance of model transformation styles in Maude 5

reducing size(< ’a : Node | value: 5 , left: ’b , right: ’c > < ’b :

Node | value: 3 , opp(left): ’a > < ’c : Node | value: 7 , opp(right):

’a >) to 1 + size(< ’b : Node | value: 3 , opp(left): ’a > < ’c : Node

| value: 7 , opp(right): ’a >), then to 2 + size(< ’c : Node | value:

7 , opp(right): ’a >) and finally to 3.

Structured models. A nested object collection allows objects to have container
attributes, i.e. configuration domain attributes. While in a plain object collection a
containment relation r between two objects o1 and o2 is represented by exploiting
a pair of association end attributes r and opp(r), now o2 is embedded into o1

by means of the container attribute r. For instance, the above tree becomes

< ’a : Node | value: 5 ,

left: < ’b : Node | value: 3 > ,

right: < ’c : Node | value: 7 > >

The hierarchical structure of models forms a tree. The two approaches that
we have described differ essentially in the way we represent such a tree. Indeed,
flat and nested representations are in bijective correspondence, i.e. for each flat
object collection we can obtain a unique nested collection and vice versa as shown
in [3], so that we can pass from one to the other as we find more convenient for
specific applications or analyses.

Transformations as sets of rewrite rules. Transformations can be defined by means
of rewrite rules, which take the form crl t => t’ if c, where t, t’ are Σ-terms,
and c is an application condition (a predicate on the terms involved in the rewrite,
further rewrites whose result can be reused, membership predicates, etc.). When
the application condition is vacuous, the simpler syntax rl t => t’ can be
used. Matching and rule application are similar to the case of equations with the
main difference being that rules are not required to be confluent and terminating
(as they represent possibly non-deterministic concurrent actions rather than
functions). Equational simplification has precedence over rule application in order
to simulate rule application modulo equational equivalence.

SPO transformations. The need for visual modelling languages and the graph-
based nature of models have contributed to the success of graph transformation
approaches to model transformations. In such approaches, transformations are
programmed in a declarative way by means of a set of graph rewrite rules.
The transformation style that we consider here is based on the algebraic graph
transformation approach [2]. The main idea is that each rule has a left-hand
side and a right-hand side pattern. Each pattern is composed by a set of objects
(nodes) possibly interrelated by means of association ends (edges). A rule can
be applied to a model whenever the left-hand side can be matched with part of
the model, i.e. each object in the left-hand side is (injectively) identified with an
object and idem for the association ends. The application of a rule removes the
matched part of the model that does not have a counterpart in the right-hand
side and, vice versa, adds to the model a fresh copy of the right-hand side part

6 R. Bruni, A. Lluch Lafuente

that is not present in the left-hand side. Items in common between the left-hand
side and the right-hand side are preserved during the application of the rule.
Very often, rules are equipped with additional application conditions, including
those typical of graph transformation systems (e.g. to avoid dangling edges) and
its extensions like Negative Application Conditions (NACs).

In our setting, this means that rules have in general the following format:

crl << lhs conf1 >> => << rhs conf1 >> if applicable(lhs conf1) .

where lhs and rhs stand for the rule’s left- and right-hand side configurations,
conf1 as the context in which the rule will be applied, and applicable is the
boolean function implementing the application condition. Simpler forms are
possible, e.g. in absence of application conditions the context is not necessary
and rules take the form: rl lhs => rhs .

In our running example the transformation rules basically take a node x and
its children y and z and puts them in some sequence, with x before y and z. This
rule might introduce branches in the sequence that are solved by appropriate
rules. A couple of rules are needed to handle some special cases, like x being the
root or a node that has already been put in the list (in the middle, tail or head).
Let us show one of the basic rules (the rest of the rules are very similar):

rl [nodeToItem]

<< < x : Node | value: vx , left: y , right: z , next: u , Ax >

< y : Node | value: vy , op(left): x, Ay >

< z : Node | value: vz , op(right): x, Az >

< u : Node | value: vu , op(next): x, Au >

conf1 >> =>

<< < x : Item | value: vx , next: y , Ax>

< y : Node | value: vy , op(next): x, next: z , Ay >

< z : Node | value: vz , op(next): y, next: u , Ay >

< u : Node | value: vu , op(next): z, Au >

conf1 >> .

SOS transformations. We now describe transformation rules in the style of
Structural Operational Semantics [9] (SOS). The basic idea is to define a model
transformation by structural induction, which in our setting basically amounts
to exploiting set union and (possibly) nesting.

We recall that SOS rules make use of labels to coordinate rule applications.
We first present the implementation style of SOS semantics in rewriting logic as
described in [10] and then present our own encoding of SOS which provides a
more efficient implementation, though circumscribed to some special cases.

The approach of [10] requires to enrich the signatures with sorts for rule labels
(Lab), label-prefixed configurations LabConfiguration, and a constructor { } :

Lab Configuration => LabConfiguration for label-prefixed configurations. In
addition, rule application is allowed at the top-level of terms only (via Maude’s
frozen attribute [11]) so that sub-terms are rewritten only when required in
the premise of a rule (as required by the semantics of SOS rules). With this

Evaluating the performance of model transformation styles in Maude 7

notation a term {lab1}conf1 represents that a configuration conf1 that has
been obtained after application of a lab1-labelled rule.

One typical rule format in our case allows us to conclude a transformation
lab1 for a configuration made of two parts conf1 and conf2 provided that each
part can respectively perform some transformation lab2, lab3:

crl conf1 conf2 => {lab3} conf3 conf4

if conf1 => {lab1} conf3

/\ conf2 => {lab2} conf4 .

Typically, the combination of labels will follow some classical form. For
instance, with Milner-like synchronisation, lab1, lab2 can be complementary
actions, in which case lab3 would be a silent action label. Instead, Hoare-like
synchronisation would require lab1, lab2 and lab3 to be equal.

Consider now a hierarchical representation of models based on nested object
collections. In this situation we need rules for dealing with nesting. Typically, the
needed rule format is the one that defines the transformation lab1 of an object
oid1 conditional to some transformation lab2 of one of its contents c:

crl < oid1 : cid1 | c: conf1 , attSet1 > =>

{lab1} < oid1 : cid1 | c: conf2 , f(attSet1) >

if conf1 => {lab2} conf2 .

Such rules might affect the attributes of the container object (denoted with
function f) but will typically not change the object’s identifier or class. More
elaborated versions of the above rule are also possible, for instance involving
more than one object or not requiring any rewrite of contained objects.

In our running example we have the following rule that transforms a tree
provided that its subtrees can be transformed into lists

crl [root] : < x : Node | value: vx , left: leftTree , right: rightTree >

=> {toList}

list1

< tail : Item | value: vt, next: x , opp(next): y >

< x : Item | value: vx , opp(next): tail , next: head >

< head : Item | value: vh, opp(next): x , next: z >

list2

if leftTree => {toList} list1 < tail : Item | value: vt , opp(next): y >

/\ rightTree => {toList} < head : Item | value: vh , next: z > list2 .

Note that head and tail of the transformed sublists are identified by the lack
of next and opp(next) attributes. Rules are also needed to handle leafs:

rl [root] : < x : Node | value: vx > => {toList} < x : Node | value: vx > .

Finally, rules are needed to close the transformations at the level of models.
Such rules have the following format:

crl << conf1 >> => << conf2 >> if conf1 => {lab1} conf2 .

In our example the rule would be

crl << conf1 >> => << conf2 >> if conf1 => {toList} conf2 .

8 R. Bruni, A. Lluch Lafuente

3 Enhanced SOS implementation

While performing our preliminary experiments we discovered a more efficient
way to encode SOS rules in rewriting logic that we call SOS*.

The most significant improvement applies to those cases in which the labels
of the sub-configurations are known in advance. As a matter of fact this was
the case of all test cases we consider in the next section. The idea is to put the
labels on the left-hand side of rules as a sort of context requiring the firing of
transformations with such label.

As a more general example the above rule scheme becomes now:

crl {lab3} conf1 conf2 => conf3 conf4

if {lab1} conf1 => conf3

/\ {lab2} conf2 => conf4 .

The main difference is that now lab2 and lab3 are known in advance and
not obtained as a result of the conditional rewrites. A notable example where
this alternative encoding cannot be immediately applied are the semantics of
process calculi where synchronisation rules do not know in advance which signals
are ready to perform their subprocesses.

Another slight improvement is the object-by-object decomposition of object
collections instead of the one based on a pair of subsets presented above. For
example the above rule scheme becomes:

crl {lab1} obj1 conf2 => obj3 conf4

if {lab2} obj1 => obj3

/\ {lab3} conf2 => conf4 .

A more significant improvement is that in some cases we allow to contextualise
rules at any place of a term. We recall that in a SOS derivation this is typically
achieved by rules that lift up silent (e.g. τ -labelled) actions. Technically this is
essentially achieved by declaring as frozen the labelling operator { } only. This
allows to apply rules to transform a sub-configuration at any level of the nesting
hierarchy. That is, SOS rules like the ones for lifting silent actions across the
nesting hierarchy like

crl < oid1 : cid1 | c: conf1 , attSet1 > =>

{tau} < oid1 : cid1 | c: conf2 , attSet1 >

if conf1 => {tau} conf2 .

or rules to lift silent actions among object configurations at the same level of the
hierarchy like

crl {tau} obj1 conf2 => obj3 conf2

if {tau} obj1 => obj3 .

are not necessary in the SOS* style.

Evaluating the performance of model transformation styles in Maude 9

Fig. 1. An instance of the model reconfiguration test case

Fig. 2. An SPO rule (left) and a SOS rule (right) for architectural reconfiguration.

4 Benchmark

Our benchmark consists of three test cases selected from the literature as archetyp-
ical examples of model reconfigurations, transformations and refactorings. In the
following we describe the main features of each test case, emphasizing the most
relevant details. For the full description of the test cases we refer to the source
code of our implementation [12] or to the indicated references.

Architectural reconfiguration. The first test case we consider is the typical re-
configuration scenario in which some components must be migrated from one
compromised location to another one. Many instances of this situation arise in
practice (e.g. clients or jobs that must be migrated from one server to another
one). Some instances of this scenario can be found e.g. in [7, 13]. In what follows
we consider a scenario in which components can be nested within each other.
Components within an unsafe component x must be migrated into an uncle
component y with the additional requirement of changing their status according

10 R. Bruni, A. Lluch Lafuente

Fig. 3. An instance of the model translation test case

to the status of their new container y. Figure 1 depicts one possible instance of
the scenario.3

The most significant SPO rule4 is depicted on the left of Fig. 2. It takes
an unsafe component and a safe component that are neighbours (they have a
common container) and moves the component inside the compromised component
one to the safe one while changing its status. More rules are needed (for instance
for considering top-level rooms without containers) and some of them have
application conditions. As a consequence, the applicability of those rule requires
to check the whole model and there is no predefined order on which rules to apply
first. The safe system (the system without components in need of evacuation) is
reached when no more transformation rules are applicable. For instance, Fig. 1
shows a possible match for the SPO rule. The effect of applying the SPO rule
will be to move the normal component under the unsafe one to its new location
(under the safe component) while changing its status into safe.

On the right of Fig. 2 instead we the see the main SOS rule: all the components
c1 contained in a unsafe component are evacuated into a safe neighbor component,
while changing their status inductively (via to(c)-labelled rules). Figure 1 shows
a possible instance of the SOS rule. The effect of the SOS rule will be to migrate
the two normal components contained in the unsafe component to the safe
component while changing their status (in addition the unsafe component is
removed).

Model translation. Our second test case is the classical translation of class
diagrams into relational database schemes (a description can be found in [14]).

3 The figures in the paper follow an intuitive UML-like notation, with boxes for objects
and arrows for references. We prefer to use this intuitive notation to sketch the
scenarios, leaving the detailed Maude implementation [12] for interested readers.

4 The big encircled arrow separates the rule’s left- and right-hand side. Object identifiers
are dropped for the sake of clarity and are to be identified by their spatial location.

Evaluating the performance of model transformation styles in Maude 11

Fig. 4. An SPO rule (left) and a SOS rule (right) for model translation

The main idea is that classes are transformed into tables and their attributes
into columns of the tables. Associations between classes are transformed into
auxiliary tables with foreign keys from the tables corresponding to the associated
classes. Figure 3 depicts one possible instance of the scenario.

Figure 4 sketches two illustrative transformation rules. The SPO rule trans-
forms a class (belonging to a package) into a table (within the corresponding
schema). It also creates a primary key and the corresponding column for the
table. A negative application condition forbids the application of the rule in
case the table already exists. The, let us say, corresponding rule in SOS format
transforms a class into a table provided that its attributes are transformed into
columns and its association ends are properly collected. An auxiliary object is
used as a container where to put association ends of the same relation in the
same context so that they can be transformed properly by another rule.

Refactoring. The example of model refactoring we consider is the classical
attribute pull-up as described in [15]. The main idea is very simple: if all the
subclasses of a class c declare the same attribute, then the attribute should be
declare at c only. This preserves the semantics of the diagram (as the sub-classes
will inherit the attribute) while simplifying it by removing redundancies. Figure
5 depicts one possible instance of the scenario.

Figure 6 depicts two illustrative transformation rules. The SPO rule pulls an
attribute up provided that it is not annotated as missing by another class (a set
of rules takes care of creating such annotations). The SOS rule instead pulls the
attribute up provided that all sibling sub-classes agree to pull it up.

5 Experiments

This section presents our experimental results. Experiments were run on an
Ubuntu Linux server equipped with Intel Xeon 2.67GHz processors and 24GB
of RAM. Each experiment consists on the transformation of instances of a test
case using the discussed representation and transformation styles. Instances are
automatically generated with the help of parameterizable instance generators
that allow us to, for instance, to scale up the instances to check scalability of the
various approaches. For each experiment we have recorded the number of rewrites
and the running time, put in the y-axis of separate plots. Each experiment

12 R. Bruni, A. Lluch Lafuente

Fig. 5. An instance of the model refactoring test case

Fig. 6. An SPO rule (left) and a SOS rule (right) for model refactoring

is performed for an increased size factor that typically makes the model grow
exponentially. The x-axis corresponds to the size of the instance in terms of
overall number of objects. The timeout for the experiments is of an hour. We
do not present results for instances larger than those where at least one of the
techniques already times out (which is denoted by the interruption of the plot).

The goal of the experiments is to collect evidence of performance differences,
draw hypotheses about the causes of those differences and validate our hypotheses
with further experiments. Our benchmark consists of the three test cases presented
in Section 4. The code for replicating our experiments is available at [12].

5.1 SOS vs SOS*

1st experiment. We start testing the impact of our improvement encoding of
SOS (SOS*) with a basic set of instance generators. The generator for the
reconfiguration test cases has a single parameter which is the depth of the

Evaluating the performance of model transformation styles in Maude 13

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 50 100 150 200 250 300

Rewrites

SOS*

SOS

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300

Running time (in seconds)

SOS*
SOS

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 500 1000 1500 2000 2500

Rewrites

SOS*

SOS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 500 1000 1500 2000 2500

Running time (in seconds)

SOS*
SOS

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 20 40 60 80 100 120 140 160 180 200

Rewrites

SOS*

SOS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160 180 200

Running time (in seconds)

SOS*
SOS

Fig. 7. SOS vs SOS* in reconfiguration (top), translation (middle), pullup (bottom).

component containment tree, i.e. for a given natural number n, it generates
a binary tree of depth n. The grandfathers of leafs have exactly one unsafe
component and one safe component as children. All other components are normal.
Figure 1 sketches one such instance. The parameter of the instance generator for
the model transformation case is the branching factor of the containment tree, i.e.
given for a given natural number n, it generates a UML domain with n packages,
each containing 2n classes, each containing n attributes and n associations.
The i-th association of class c with c even (resp. odd) has as opposite the i-th
association of class c + 1 (resp. c − 1). So-built domains have n packages, 2n2

classes and n3 association pairs (c.f. Fig. 3).
The instance generator for the refactoring test case produces binary trees of

class hierarchies. Hence, each class has two sub-classes. In addition each sub-class
has one local attribute (that will not be pulled up) and one (non-local) attribute

14 R. Bruni, A. Lluch Lafuente

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250 300

Rewrites

SOS*

SOS

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

Running time (in seconds)

SOS*
SOS

Fig. 8. SOS vs SOS*: effect of disabling new attempts.

inherited from its parent. The topmost class has only one local attribute and one
(non-local) attribute (c.f. Fig. 5).

The results of Fig. 7 show a clear superiority of SOS* in most cases. The only
exception is the model translation test case. We argue that there are two reasons.
First, SOS* allows to contextualise some reconfigurations at an arbitrary level of
the nesting hierarchy while SOS have to derive the reconfiguration at the top
level by lifting up silent rewrite steps. The second reason is that SOS* performs
less transformation attempts as it does not try rules that have unnecessary labels.

The reconfiguration test case is a perfect example for both issues. First,
regarding the free contextualisation of top SOS* rules we observe that in the
considered instances the rule can be applied at the bottom of the term, while
the SOS rules require in addition to lift the application of such rule up to the
root. In addition, determining whether a transformation can be carried out
can be determined by the non-applicability of rules in the SOS* case, while in
the SOS case requires to perform many unsuccessful transformation attempts.
In the model translation both styles are essentially equivalent as the top rule
must necessarily apply at the top of the term representing the model and after
transformation the rules are deactivated as the necessary patterns disappear.

2nd experiment. In order to validate the first hypothesis we have performed
experiments where safe components do not accept reconfigurations. In addition a
component whose sub-components are safe becomes safe. This does not only dis-
ables reconfigurations after possible a migration but also prevents reconfiguration
attempts. The results are depicted in Fig. 8 where it can be seen that now SOS
scales better since the number of rewrite attempts for silent transitions is reduced
(safe components and their containment are not checked for reconfiguration).

3rd experiment. Another improvement of SOS* regards the top-down imposition
of labels in rewrite conditions. In order to validate the effect of top-down enact-
ing of transformations we have conducted further experiments with the model
reconfiguration test case with a different instance generator: now the root is a
normal component, the two sons of the root are a unsafe and a safe component
that contain a fixed number components, each able to change into safe plus

Evaluating the performance of model transformation styles in Maude 15

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 1 2 3 4 5 6 7 8

Rewrites

SOS*

SOS

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8

Running time (in seconds)

SOS*
SOS

Fig. 9. SOS vs SOS*: effect of increasing the number of enabled actions.

any status of a set of size n, the parameter of the generator. So, for n = 0, the
components to be migrated are able to change into safe, for n = 0 they are ready
to change into safe and another status, and so on. The results of such experiment
are depicted in Fig. 9.

As expected the SOS* transformation is not affected as n increases. Indeed,
the SOS* transformation rules will call for a transformation into safe, while in
the SOS transformation all possible status changes will be attempted. As a result
the computational effort of SOS transformations blows up with the increase of n.

5.2 SPO vs SOS*

In this set of experiments we compare the SPO approach against the SOS* one.

1st experiment. We start with the first set of instance generators used in §5.1.
The results of Fig. 10 show that SOS* is superior in the reconfiguration

test case only. The situation can be roughly explained as follows: matching the
migration rule consists on finding a subtree whose root is a component having
two subtrees: one having a unsafe component as root and one having a safe one
as root. In the SPO case the tree is not parsed: indeed we are given a graph and
have to check all possible subsets of nodes to see if they constitute indeed a tree.
Instead in the SOS case the tree is already parsed (the parsing is a term of the
hierarchical representation) which enormously facilitates rule matching (recall
that matching amounts to subgraph isomorphism which is NP-complete). As a
consequence, the SPO transformation involves more unsuccessful rule attempts
and this is the main reason of the drastic difference in running time (and not in
number of effective rewrites).

In the rest of the test cases SPO performs better. This is particularly evident in
the refactoring test case where the performance of SOS* degenerates mainly due
to the lack of a smart transformation strategy. Indeed it can happen that a pull
up has to be attempted at some class every time one of the terms corresponding
to one of the subclasses changes. Clearly applying rules bottom up would result
in better results but this would require a more cumbersome implementation.

16 R. Bruni, A. Lluch Lafuente

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 50 100 150 200 250 300

Rewrites

SOS*

SPO

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300

Running time (in seconds)

SOS*
SPO

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 500 1000 1500 2000 2500

Rewrites

SOS*

SPO

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 500 1000 1500 2000 2500

Running time (in seconds)

SOS*
SPO

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 50 100 150 200 250 300 350 400

Rewrites

SOS*

SPO

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300 350 400

Running time (in seconds)

SOS*
SPO

Fig. 10. SPO vs SOS* in reconfiguration (top), translation (middle), pullup (bottom).

We focus now on the transformation test case were we see that SPO performs
only slightly better. There are various reasons. First, the structure of the model is
rather flat. Indeed the hierarchy is limited to a fixed depth as packages contains
classes, classes attributes and associations and that is. So containment trees are
of depth 3. In addition, association pairs have to lifted to the top level in the
SOS* transformation since the transformation rule that translates them needs
them to be in a common context. This involves an overhead that makes SOS*
exhibit a worse performance.

2nd experiment. In order to check the impact of such overhead we have performed
an additional experiment in which the instances have no associations at all.
Figure 11 shows the results were we see how SOS* is the winner this time
confirming our hypothesis.

Evaluating the performance of model transformation styles in Maude 17

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200

Rewrites

SOS*

SPO

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

Running time (in seconds)

SOS*
SPO

Fig. 11. SPO vs SOS*: effect of removing associations.

6 Conclusion

We have presented an empirical evaluation of the performance of two transforma-
tion styles that are very popular in rule-based programming and specification.
For instance, in the process algebra community they essentially correspond to
the rule formats used for specifying reduction and transition label semantics.

We have focused on model transformations and as a result of our experience
we have obtained a set of hints that should be useful for future development of
model transformations (or other kind of rule-based specifications) in Maude. We
are currently investigating to which extent our experience can be exported to
other rule-based frameworks like CafeOBJ [16], Stratego [17] or XSLT [18] with
a particular attention to model transformation frameworks such as MOMENT2-
MT [19], ATL [20], Stratego/XT [21], and SiTra [22].

It is worth to remark that the aim of the paper is not to compare the
performance of transformation tools as done in various works and competitions [23–
25]. Rather we assume the point of view of a transformation programmer, which is
given a fixed rule-based tool and can only obtain performance gains by adopting
the appropriate programming style.

Even if we have focused fundamentally on deterministic transformations
many cases (e.g. reconfigurations) are inherently non-deterministic. This gives
rise to a state space of possible configurations, whose complexity and required
computational effort is influenced again by the chosen rule style.

Another interesting aspect to be investigated is to understand if and how strat-
egy languages (c.f. [26]) or heuristics (c.f. [27]) can be exploited to appropiatedly
guide the model transformation process in the most convenient way.

References

1. Meseguer, J.: Conditional rewriting logic as a united model of concurrency. Theo-
retical Computer Science 96 (1992) 73–155

2. Rozenberg, G., ed.: Handbook of Graph Grammars. World Scientific (1997)
3. Bruni, R., Lluch Lafuente, A., Montanari, U.: On structured model-driven trans-

formations. International Journal of Software and Informatics (IJSI) 2 (2011)

18 R. Bruni, A. Lluch Lafuente

4. Boronat, A., Bruni, R., Lluch-Lafuente, A., Montanari, U., Paolillo, G.: Exploiting
the hierarchical structure of rule-based specifications for decision planning. In:
International Joint Conference on Formal Techniques for Distributed Systems
(FMOODS/FORTE’10). Volume 6117 of LNCS., Springer (2010)

5. Meseguer, J., Talcott, C.: Semantic models for distributed object reflection. In
Magnusson, B., ed.: 16th European Conference on Object-Oriented Programming
(ECOOP’02). Volume 2374 of LNCS. Springer (2006) 1637–1788

6. Meseguer, J.: A logical theory of concurrent objects. In: International Conference
on Object Oriented Programming Systems Languages and Applications (OOP-
SLA/ECOOP’90). (1990) 101–115

7. Boronat, A., Meseguer, J.: An algebraic semantics for MOF. In: International
Conference on Fundamental Aspects of Software Engineering (FASE’08). Volume
4961 of LNCS., Springer (2008) 377–391

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude. Volume 4350 of LNCS. Springer (2007)

9. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61 (2004) 17–139

10. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in Maude.
Journal of Logic and Algebraic Programming 67 (2006) 226–293

11. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360 (2006) 386–414

12. http://cse.lab.imtlucca.it/~lluch/facs2011.tgz.
13. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Style based architectural

reconfigurations. Bulletin of the European Association of Theoretical Computer
Science (EATCS) 94 (2008) 161–180

14. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What is a Multi-Modeling
Language? In: WADT’08. Volume 5486 of LNCS., Springer (2009) 71–87

15. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: EMF
model refactoring based on graph transformation concepts. In: 3rd Workshop on
Software Evolution through Transformations. Volume 3., ECEASST (2006)

16. CafeObj, http://www.ldl.jaist.ac.jp/cafeobj/.
17. Stratego, http://www.program-transformation.org/Stratego/.
18. XSLT, http://www.w3.org/TR/xslt20/.
19. MOMENT2-MT: www.cs.le.ac.uk/people/aboronat/tools/moment2-gt/.
20. ATL, http://www.eclipse.org/atl/.
21. StrategoXT, http://strategoxt.org/.
22. SiTra, http://www.cs.bham.ac.uk/~bxb/SiTra.html.
23. Rewrite engines competition, www.lcc.uma.es/~duran/rewriting_competition/.
24. Graph Transformation Contest, http://fots.ua.ac.be/events/grabats2008/.
25. Varró, G., Schürr, A., Varró, D.: Benchmarking for graph transformation. In: IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05),
IEEE Computer Society (2005) 79–88

26. Braga, C., Verdejo, A.: Modular structural operational semantics with strategies.
ENTCS 175 (2007) 3–17

27. Kessentini, M., Sahraoui, H., Boukadoum, M., Omar, O.: Search-based model
transformation by example. Software and Systems Modeling (2010) 1–18

