
Towards Generic Monitors for Object-Oriented
Real-Time Maude Specifications

Antonio Moreno-Delgado1, Francisco Durán1, José Meseguer2

1University of Málaga, Spain.
2University of Illinois at Urbana-Champaign, United States.
{amoreno,duran}@lcc.uma.es, meseguer@illinois.edu

Abstract. Non-Functional Properties (NFPs) are crucial in the design
of software. Specification of systems is used in the very first phases of the
software development process for the stakeholders to make decisions on
which architecture or platform to use. These specifications may be an-
alyzed using different formalisms and techniques, simulation being one
of them. During a simulation, the relevant data involved in the anal-
ysis of the NFPs of interest can be measured using monitors. In this
work, we show how monitors can be parametrically specified so that the
instrumentation of specifications to be monitored can be automatically
performed. We prove that the original specification and the automati-
cally obtained specification with monitors are bisimilar by construction.
This means that the changes made on the original system by adding
monitors do not affect its behavior. This approach allows us to have a
library of possible monitors that can be safely added to analyze different
properties, possibly on different objects of our systems, at will.

1 Introduction

As system complexity grows, specification of systems becomes an even more im-
portant task during the first phases of the software life cycle. With the prolifera-
tion of distributed systems due to Cloud-computing systems, Internet of Things,
etc., with software being present in all activities of our lives, Non-Functional
Properties (NFPs) are gaining relevance in design decisions.

Specification of software and its simulation can be used to get insights about
how the system is going to behave. Furthermore, by adding monitors or ob-
servers to system specifications, software engineers can analyze those NFPs of
interest [9]. System specifications have to be instrumented in order to get probes
of executions. One may think of different NFPs, such as response time, through-
put, mean cycle time or rate of failures. However, different NFPs have to be
monitored by different observers, and such observers are typically hard-coded in
the specifications.

To cope with this lack of modularity, many alternatives have been proposed.
For example, in Aspect-Oriented Programming, code is instrumented by moni-
tors as a cross-cutting concern. Other works, as the one presented in [16], propose

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62907654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

adding observers as new elements (objects) of the language. See [17] for a discus-
sion of how to monitor non-functional properties in component-based systems.

In most cases, and even with more emphasis in the case of distributed or
concurrent systems, these specifications are written with, among others, the
purpose of verification. Different kinds of verification can be achieved depending
on the desired level of evidence and precision in the proofs. Furthermore, some
formalisms are more amenable to perform some proofs or checks than others.
For example, a specification in Promela/Spin [8] is more amenable to perform
model-checking that a specification in UML. Likewise, a specification in Coq [1]
is well-suited to perform theorem-proving. This means that a tight dependence
between formalisms and the verification one can perform exists. Among all kind
of formalisms, we find very attractive those which can be executed, since the
software engineers involved in the software development can get insights on where
they are failing or on which parts they have to stress.

Execution of a system specification means that the system at hand can be
simulated in the very first phases of software design, and, at very low additional
cost, software engineers can test different designs and approaches, thus getting
insight about how the system is going to fulfill the required NFPs. However,
to analyze the behavior of a system under simulation, we have to measure the
properties we want to study.

Rewriting logic [10] provides a formal framework where concurrent and dis-
tributed systems can be naturally defined. Since the specification remains within
a formal environment, different kinds of verification can be performed: conflu-
ence, model-checking, reachability analysis or invariant analysis. Additionally,
rewriting logic specifications are executable, providing prototypes that can be
simulated and tested.

In this work we propose the definition of monitors in a very general way.
If monitors are defined following certain guidelines, their addition to any real-
time object-oriented specification is automatic, and what more important, the
original behavior of the system after being instrumented is not changed.

We focus on object-oriented modules that must be defined using Real-Time
Maude [14], since the main applications we envision are real-time and stochastic
systems. On these specifications, we are interested in measuring system proper-
ties, i.e., properties that affect the whole system as throughput, and individual
properties, i.e., properties related to concrete objects as traffic or utilization.

Monitors can be defined just by querying data. Thus, we give a skeleton
Maude module which can be used to define any kind of monitor query by spec-
ifying the data structure to use and the query to perform.

Besides the theoretical results, a tool in the rewriting logic language Maude
is presented to include generically defined monitors to system specifications.
Using the reflective capabilities of Maude, we have defined module operations
that take the specifications to be analized and the generic monitors to be used
on them, and generate new modules with the instrumented specifications. We
have used the extensibility capabilities of Full Maude [4, 6] to provide a new
module expression giving access to such module operation. Thus, we can not

only automatically instrument our specifications with reusable monitors, but
also use them in our specifications and commands as any other module.

The rest of the paper is structured as follows. Section 2 presents the rewriting
logic language Maude and its Real-Time Maude extension, which allows us to de-
fine systems with time annotations. Section 3 presents the structure of monitors
we use and basic principles of the approach. Section 4 presents the automatic
transformation and the module operation implementing it. Section 5 provides
the proof for bisimilarity between the original specification and the instrumented
one. Section 6 provides one additional example. Section 7 wraps up the paper
with some conclusions and ideas for further extensions and improvements.

2 Maude and Real-Time Maude

Maude [2, 3] is an executable formal specification language based on rewrit-
ing logic [10], a logic of change that can naturally deal with states and non-
deterministic concurrent computations. A rewrite logic theory is a tuple (Σ,E,R),
where (Σ,E) is an equational theory that specifies the system states as elements
of the initial algebra T(Σ,E), and R is a set of rewrite rules that describe the
one-step possible concurrent transitions in the system.

Rewriting operates on congruence classes of terms modulo E. This of course
does not mean that an implementation of rewriting logic must have an E-
matching algorithm for each equational theory E that a user might specify. The
equations E are divided into a set A of structural axioms for which matching
algorithms are available and a set E of equations. Then, for having a complete
agreement between the specification’s initial algebra and its operational seman-
tics by rewriting, a rewrite theory (Σ,E ∪A,R) is assumed to be such that the
set E of equations is (ground) Church-Rosser and terminating modulo A, and
the rules R are (ground) coherent with the equations E modulo A (see [5, 7]).

Maude provides support for rewriting modulo associativity, commutativity
and identity, which perfectly captures the evolution of systems made up of ob-
jects linked by references. Maude has a rich set of verification and validation
tools, and its use is widespread in many fields of research. Furthermore, Maude
has demonstrated to be a good environment for rapid prototyping, and also for
application development (see [3]).

Among the tools and extensions of Maude, one interesting tool for specifying
distributed and concurrent systems is Real-Time Maude [14], a rewriting-logic-
based specification language and formal analysis tool that supports the formal
specification and analysis of real-time systems. Real-Time Maude provides a sort
Time to model the time domain, which can be either discrete or dense. Then,
passage of time is modelled with tick rules of the form

crl [l] : { t, T } => { t′, T + τ } if C .

where t and t′ are system states, T is the global time, and τ is a term of sort Time
that denotes the duration of the rewrite, and that advances by τ the global time
elapse. Since tick rules advance the global time, in Real-Time Maude time elapse

is usually modeled by one single tick rule, and the system dynamic behavior by
instantaneous transitions [14]. Although there are other sampling strategies, in
the most convenient one this single tick rule models time elapse by using two
functions: the delta function, that defines the effect of time elapse over every
model element, and the mte (maximal time elapse) function, that defines the
maximum amount of time that can elapse before any action can be performed.
Then, time can advance non-deterministically by any time amount τ , which must
be less than or equal to the maximum time elapse of the system.

crl [tick] : { t, T } => { delta(t, τ), T + τ } if 0 < τ ≤ mte(t) ∧ C .

3 General monitors

In this section we present our proposal for the specification of system-independent
monitors. Given a Real-Time Maude object-oriented system specification we pro-
vide operations to automatically add objects to measure different properties. We
distinguish two types of properties, namely, those on individual objects, e.g., the
number of messages received by each node in a network, or the number of defec-
tive pieces produced by each machine in a production line, and those on global
systems, e.g., the average time taken by messages in reaching their destination
or the average failure rate of the machines in a system. We handle both cases
uniformly by assuming that there are classes in our specification whose objects
“represent” the subsystems being monitored. For instance, we might assume that
our network of nodes has a net object with references to all the nodes in it. This
would allow us to use an individual monitor associated to the net object instead
of a system monitor associated to all the node objects. This might be the case
if we wanted to consider, for instance, multiple nets in the same system and
separately monitor information on them.

We assume a Real-Time Maude object-oriented specification, with a flat con-
figuration of objects and messages (i.e., no nested configurations) and with all
rewrite rules of the system defined on terms of sort System, that is, on terms
of the form { Conf, T }, with Conf a flat configuration and T a term of sort
Time.

To present and illustrate our monitors, we use a very simple specification of a
messaging system, shown in Figure 1, where we have interconnected nodes, some
of which belong to a subclass a message creator nodes, which create messages
to be delivered through the net via specific neighbors. The Node class is defined
with an attribute neighbors of type List{Oid}. Its MsgCreator subclass has, in
addition, attributes targets, with the identifiers of the nodes it may be address-
ing messages to, and a counter to limit the number of generated messages. The
Net class represents the entire net of nodes. It has an attribute elems with the
identifiers of the nodes in the net. Messages are of the form to T via N, without
sender identifier nor any contents to simplify the specification, where T is the
identifier of the target node and N is the neighbor node the message is being sent
through. The auxiliary operation pickOne is used to select an element in a list,

omod SMP i s
pr NAT−TIME−DOMAIN−WITH−INF .
inc RANDOM + COUNTER .
pr LIST{ Oid} .

var Msg : Msg . vars O O1 ON : Oid .
var VCreator : MsgCreator . var VNode : Node .
var VNet : Net . vars T T ’ : TimeInf .
vars L L ’ EL EL ’ : List{ Oid} . var N : Nat .
var Atts : AttributeSet . var Conf : Configuration .

sort System .
op {_ , _} : Configuration TimeInf −> System [ctor] .

class Net | elems : List{ Oid} .
class Node | neighbors : List{ Oid} .
class MsgCreator | targets : List{ Oid } , counter : Nat .
subclass MsgCreator < Node .
msg to_via_ : Oid Oid −> Msg .

op delay : Msg Time −> Msg .
eq delay (Msg , 0) = Msg .

r l [create−msg] :
{ < ON : VNet | elems : (EL O EL ’) >
< O : VCreator | targets : L , neighbors : L ’ ,

counter : s (N) , Atts > Conf , T }
=>
{ < ON : VNet | elems : (EL O EL ’) >
< O : VCreator | targets : L , neighbors : L ’ , counter : N , Atts >
delay (to pickOne (L , random (counter) rem size (L))

via pickOne (L ’ , random (counter) rem size (L ’)) ,
random (counter) rem 500)

Conf , T } .
r l [get−msg] : { < ON : VNet | elems : (EL O EL ’) >

< O : VNode | Atts > (to O via O1) Conf , T }
=> { < ON : VNet | elems : (EL O EL ’) >

< O : VNode | Atts > Conf , T } .
cr l [resend−msg] : { < ON : VNet | elems : (EL O EL ’) >

< O : VNode | neighbors : L , Atts >
(to O1 via O) Conf , T }

=> { < ON : VNet | elems : (EL O EL ’) >
< O : VNode | neighbors : L , Atts >
delay (to O1 via pickOne (L , random (counter) rem size (L)) ,

random (counter) rem 5) Conf , T }
i f O =/= O1 .

op pickOne : List{ Oid} Nat ˜> Oid .
eq pickOne (O L , 0) = O .
eq pickOne (O L , s (N)) = pickOne (L , N) .

op mte : Configuration −> TimeInf .
eq mte (delay (Msg , T) Conf) = min (T , mte (Conf)) .
eq mte ((to O via O1) Conf) = 0 .
eq mte (Conf) = INF [owise] .

op delta : Configuration Time −> Configuration .
eq delta (delay (Msg , T) Conf , T ’)

= delay (Msg , T monus T ’) delta (Conf , T ’) .
eq delta (Conf , T) = Conf [owise] .

cr l [tick] : { Conf , T } => { delta (Conf , T ’) , T + T ’ }
i f T ’ := mte (Conf) /\ 0 < T ’ /\ T ’ < INF .

endom

Fig. 1. Specification of a simple messaging system

omod MONITOR i s
pr CONFIGURATION .
pr NAT−TIME−DOMAIN−WITH−INF .
sort Data .
class @Monitor | o : Object , data : Data .
op eval : Data Time Object Configuration Configuration Configuration

−> Data .
op mon : Oid −> Oid [ctor] .

endom

Fig. 2. Core of monitors

which will be used in the create-msg and resend-msg rules to randomly select
elements in the list of targets and neighbors. The create-msg rule creates a
new message addressed to a random target via a random neighbor, the get-msg

specifies the reception of a message by its addressee, and the resend-msg rule
specifies the action in which a node receives a message that is not addressed for
it and resends it via one of its neighbors. Note that such rule will resend the
message via one of its randomly chosen neighbors. Delays in message delivery is
specified with the usual delay operator (see [14]). Real-Time Maude’s tick rule
and mte and delta functions are defined as usual.

Inspired by the works on wrapper objects, and specifically on the Onion-Skin
pattern [13, 11], we add monitors to our specification by means of wrappers. We
will show a generic monitor structure that, by specifying the definition of the
data structure and the query for the monitor to use, can be instantiated to a
concrete monitor to be added to our system.

Each object to be monitored is wrapped inside a monitor object that will
observe its behavior and will collect the required information on it. This generic
monitor structure is defined by the MONITOR module in Figure 2. There is a class
@Monitor whose instances will wrap objects in their o attributes. The data of
the monitor is stored in the attribute data, of sort Data, to be later instantiated
depending on the specific kind of monitor defined. There is an operation eval,
that will be used to recalculate the monitored information, depending on the
actions specified in individual rules, with parameters: (i) the current monitor’s
data, (ii) the time at which the expression is evaluated, (iii) the monitored object
in the LHS of the rule, (iv) the objects and messages explicitly stated in the rule’s
LHS, (v) the objects and messages in the rule’s RHS, and (vi) the rest of the
LHS’ configuration. The individual monitor of an object with identifier O will
have identifier mon(O).

Specific monitors can be defined by specifying of the function eval, which
could be defined over any data structure, just by appropriately subsorting the
sort Data. For example, given the simple messaging system specified in the mod-
ule in Figure 1, we may count the number of messages received by each of the
nodes in the system by wrapping each of them inside monitor objects as in
Figure 4, and by defining the eval function in a module TRAFFIC-MONITOR ex-
tending the MONITOR module, given an auxiliary #msgs function which counts
the number of messages in a configuration, as shown in Figure 3. Note that the

data attribute remains unchanged in the create-msg rule, but it is recalculated
in rules get-msg and resend-msg, those rules in which node objects receive
messages.

omod TRAFFIC−MONITOR i s
inc MONITOR .
pr NAT .
subsort Nat < Data .

var N : Nat .
var T : Time .
var Obj : Object .
vars LConf RConf GConf : Configuration .

eq eval (N , T , Obj , LConf , RConf , GConf)
= N + #msgs (LConf) .

op #msgs : Configuration −> Nat .
eq #msgs (Msg Conf) = s(#msgs (Conf)) .
eq #msgs (Conf) = 0 [owise] .

endom

Fig. 3. Traffic monitors

The subsort relation states the data type of the monitor data. This monitor
is going to store only a natural number, used to count the number of messages
the node at hand has processed. Note that the operation eval is total and it
will increment the natural number stored in the monitor with the number of
messages in the rule’s LHS.

By rewriting our initial configuration with our nodes wrapped inside monitor
objects using the rules in Figure 4, we get a final configuration in which the
data attributes of each of the monitor objects contains the number of messages
received by that node.

4 Construction of the instrumented specification

The construction of instrumented specifications has been automated by provid-
ing a module expression MONITOR that takes as arguments the specification to
be monitored, the class whose objects are to be wrapped, the set of rules on
which the measures are to be evaluated, and a concrete monitor to apply to it,
in which the Data sort and the eval functions are defined, and that produces the
corresponding new module. The module expression is integrated in Full Maude
and is handled as any other module expression [6].

Given an object-oriented system specification S, a class C, a set of rule labels
LS, and a concrete monitor M , the rewrite theory M [S,C,LS,E] denotes the
system S but now instrumented with the monitor E as follows:

– M [S,C,LS,E] includes both S and M , plus transformed copies of the rules
of S so that each rule of the form

var Msg : Msg . vars O O1 ON : Oid .
var VCreator : MsgCreator . var VNode : Node .
vars L L ’ EL EL ’ : List{ Oid} . var N : Nat .
vars Atts @Atts : AttributeSet . var Conf : Configuration .
vars T T ’ : TimeInf . var VNet : Net .
var @D : Data .

r l [create−msg] :
{ < ON : VNet | elems : (EL O EL ’) >
< mon (O) : @Monitor |

o : < O : VCreator |
targets : L , neighbors : L ’ , counter : s (N) > >

Conf , T }
=>
{ < ON : VNet | elems : (EL O EL ’) >
< mon (O) : @Monitor |

o : < O : VCreator |
targets : L , neighbors : L ’ , counter : N > >

delay (to pickOne (L , random (counter) rem size (L))
via pickOne (L ’ , random (counter) rem size (L ’)) ,

random (counter) rem 500)
Conf , T } .

r l [get−msg] : { < ON : VNet | elems : (EL O EL ’) >
< mon (O) : @Monitor | o : < O : VNode | Atts > >
(to O via O1) Conf , T }

=> { < ON : VNet | elems : (EL O EL ’) >
< mon (O) : @Monitor | o : < O : VNode | Atts > > Conf , T } .

cr l [resend−msg] : { < ON : VNet | elems : (EL O EL ’) >
< mon (O) : @Monitor |

o : < O : VNode | neighbors : L >,
data : @D >

(to O1 via O) Conf , T }
=> { < ON : VNet | elems : (EL O EL ’) >

< mon (O) : @Monitor |
o : < O : VNode | neighbors : L >,
data : eval (@D , T ,

< O : VNode | neighbors : L >,
(< ON : VNet | elems : (EL O EL ’) >
< O : VNode | neighbors : L > (to O1 via O)) ,

(< ON : VNet | elems : (EL O EL ’) >
< O : VNode | neighbors : L >
delay (to O1

via pickOne (L , random (counter) rem size (L)) ,
random (counter) rem 5)) ,

Conf) >
delay (to O1 via pickOne (L , random (counter) rem size (L)) ,

random (counter) rem 5) Conf , T }
i f O =/= O1 .

Fig. 4. Rules of the simple messaging system with individual monitors

cr l [L] : { < O : C′ | Atts > Conf , T }
=> { < O : C′ | Atts′ > Conf ′ , T }
i f Cond .

with C ′ a subclass of C or C itself, and L in LS, generates a new rule

cr l [L] :
{ < mon (O) : Monitor | o : < O : C | Atts >, data : D > Conf , T }
=>
{ < mon (O) : Monitor |

o : < O : C | Atts′ >,
data : eval (D , T ,

< O : C | Atts >,
Conf ,

< O : C | Atts′ > Conf ′) >

Conf ′ ,
T }

i f Cond .

– All other occurrences of objects

< O : C | Atts >

of subclasses of C in rules, equations and memberships will be rewritten as

< mon (O) : Monitor | o : < O : C | Atts >, data : D >.

– All other objects in rules are left as they were.
– In case multiple objects appear in the same rule/equation/membership, dif-

ferent D variables will be consistently used. E.g., if L is not in LS, for a rule
with two objects of class C in its left-hand side, the following rule will be
generated:

cr l [L] :
{ < mon (O1) : Monitor | o : < O1 : C | Atts1 >, data : D1 >
< mon (O2) : Monitor | o : < O2 : C | Atts2 >, data : D2 >
Conf , T }

=>

{ < mon (O1) : Monitor | o : < O1 : C | Atts1 ′ >, data : D1 >

< mon (O2) : Monitor | o : < O2 : C | Atts2 ′ >, data : D2 >

Conf ′ , T }

Note that:

– Those rules with no objects in subclasses of C remain as in the original
module, and

– There might be more than one object in subclasses of C in the lefthand side
of a rule, in which case the above transformation has to be applied to each
of them, that is, we must consider all possible matches of the above pattern.
E.g., given a rule

cr l [L] :
{ < O1 : C1 | Atts1 >
< O2 : C2 | Atts2 >
Conf , T }

=>

{ < O1 : C1 | Atts1 ′ >

< O2 : C2 | Atts2 ′ >

Conf ′ , T }
i f Cond .

with C1 and C2 subclasses of C and L in LS, we get the rule

cr l [L] :
{ < mon (O1) : Monitor | o : < O1 : C1 | Atts1 >, data : D1 >
< mon (O2) : Monitor | o : < O2 : C2 | Atts2 >, data : D2 >
Conf , T }

=>
{ < mon (O1) : Monitor |

o : < O1 : C1 | Atts1 ′ >,
data : eval (D1 , T ,

< O1 : C1 | Atts1 >,
< O2 : C2 | Atts2 > Conf ,

< O1 : C1 | Atts1 ′ > < O2 : C2 | Atts2 ′ > Conf ′) >
< mon (O2) : Monitor |

o : < O2 : C2 | Atts2 ′ >,
data : eval (D2 , T ,

< O2 : C2 | Atts2 >,
< O1 : C1 | Atts1 > Conf ,

< O1 : C1 | Atts1 ′ > < O2 : C2 | Atts2 ′ > Conf ′) >

Conf ′ , T }
i f Cond .

Given the SMP module shown in Figure 1 and the module TRAFFIC-MONITOR

in Figure 3 defining the counter of received messages, the module expression

MONITOR [SMP , Node , get−msg resend−msg , TRAFFIC]

produces the instrumented version of the SMP module as previously explained.
This module operation is indeed integrated in Full Maude and can be used, for
example, to execute the following rewrite command:

rew in MONITOR [SMP , Node , get−msg resend−msg , TRAFFIC−MONITOR] :
{ < n : Net | elems : (n1 n2 n3 n4 n5 n6 n7) >
< mon (n1) : @Monitor |

o : < n1 : MsgCreator | targets : (n2 n3 n4 n5 n6 n7) ,
neighbors : (n2 n3 n4 n5 n6) ,
counter : 500 >,

data : 0 >
< mon (n2) : @Monitor | o : < n2 : Node | neighbors : (n1 n3 n7) >,

data : 0 >
< mon (n3) : @Monitor | o : < n3 : Node | neighbors : (n1 n2 n4) >,

data : 0 >
< mon (n4) : @Monitor | o : < n4 : Node | neighbors : (n1 n3 n5) >,

data : 0 >
< mon (n5) : @Monitor | o : < n5 : Node | neighbors : (n1 n4 n6) >,

data : 0 >
< mon (n6) : @Monitor | o : < n6 : Node | neighbors : (n1 n5 n7) >,

data : 0 >
< mon (n7) : @Monitor | o : < n7 : Node | neighbors : (n1 n6 n2) >,

data : 0 >, 0 } .
result GoodSystem :
{ < n : Net | elems : (n1 n2 n3 n4 n5 n6 n7) >
< mon (n1) : @Monitor |

o : < n1 : MsgCreator | neighbors : (n2 n3 n4 n5 n6) ,
targets : (n2 n3 n4 n5 n6 n7) ,
counter : 0 >,

data : 923 >
< mon (n2) : @Monitor | o : < n2 : Node | neighbors : (n1 n3 n7) >,

data : 459 >
< mon (n3) : @Monitor | o : < n3 : Node | neighbors : (n1 n2 n4) >,

data : 545 >
< mon (n4) : @Monitor | o : < n4 : Node | neighbors : (n1 n3 n5) >,

data : 537 >
< mon (n5) : @Monitor | o : < n5 : Node | neighbors : (n1 n4 n6) >,

data : 530 >

< mon (n6) : @Monitor | o : < n6 : Node | neighbors : (n1 n5 n7) >,
data : 470 >

< mon (n7) : @Monitor | o : < n7 : Node | neighbors : (n1 n6 n2) >,
data : 219 >,

1238 }

5 Addition of individual monitors preserves behavior

Adding individual monitors to our specification should not modify the behav-
ior of the system specification, in the sense that there must be a one-to-one
correspondence between the rewrites in the original specification and the instru-
mented one. This idea is captured by the notion of bisimulation, defined as a
simulation relation whose inverse relation is also a simulation [12]. In this section
we provide bisimulation proofs for the addition of monitors.

We will name S a generic system defined as an object-oriented system with
time annotations. We assume a Real-Time Maude specification as above de-
scribed. We will denote by E a particular monitor to be added to S. The result
of the composition of E in S, with a distinguish class C of S and a set of labels
of rules LS of S, will be denoted as M [S,C,LS , E]. In this section we prove
that adding this general individual monitors does not modify the behavior of
our system by showing that a bisimulation between M [S,C,LS , E] and S exists.

First, notice that the transformation injecting the monitors depends on the
class whose objects are to be monitored, and that in order to define a total func-
tion we need to restrict the kind of systems we may consider. We introduce sorts
GoodSystemS and GoodSystemM [S,C,LS ,E] respectively as subsorts of SystemS

and SystemM [S,C,LS ,E]. The kind of object configurations permitted in these
sorts satisfy all the usual requirements of object configurations (no repeated ob-
ject identifiers, no repeated attributes in objects, objects have attributes defined
in their classes or superclasses, etc.). Moreover, all objects in configurations of
terms of sort GoodSystemM [S,C,LS ,E] wrapped in monitor objects are instances
of class C or subclasses of it. We define these good-system sorts using conditional
memberships.

By using techniques related to ground invariance [15], and assuming that the
term algebra TΣS/ES ,GoodSystemS

is closed under the relation→RS
, we prove that

TΣM[S,C,LS,E]/EM[S,C,LS,E],GoodSystemM[S,C,LS,E]
is closed under →RM[S,C,LS,E]

. If not
total, a transition relation→ can be extended to→• by adding pairs of the form
a→• a when a cannot be rewritten (see [12, 3] for an automatic transformation).
Assuming a set of propositionsAP and labeling functions LS : GoodConfigS → P (AP)
and LM [S,C,LS ,E] : GoodConfigM [S,C,LS ,E] → P (AP), which associates to each
state with the set of atomic propositions that hold in it, we extend S and
M [S,C,LS , E] to Kripke structures AS = (TΣS/ES ,GoodSystemS

,→S , LS) and
AM [S,C,LS ,E] = (TΣM[S,C,LS,E]/EM[S,C,LS,E],GoodSystemM[S,C,LS,E]

,→M [S,C,LS ,E], LS ◦
H), respectively, where H is the function defined below.

Let us consider the following mapH and let us prove it is a (strict) simulation:

H : GoodSystemM [S,C,LS ,E] → GoodSystemS

First of all, note that, since we have labeling functions L and H ◦L, H preserves
labeling functions in a strict sense. Given variables O, C, Atts, D and Conf of
sorts Oid, C, AttributeSet, Data and Configuration, respectively, we define
the H function using a recursively-defined auxiliary function H ′ as follows:

H({ Conf , T }) = { H ′(Conf), T }

H ′(< mon(O) : @Monitor | o : < O : C | Atts >, data : D > Conf)

= < O : C | Atts > H ′(Conf)

H ′(Conf) = Conf otherwise

H is a function that removes all monitor objects, leaving the monitored
objects as they were (without wrappers). Other objects and all messages are
just left as such.

Following the methods introduced in [12], we split the rules RM [S,C,LS ,E] into
the following three disjoint sets of rules:

– Let R1
M [S,C,LS ,E] be the set of rules without modifications, i.e., rules in RS

(rules with no objects of subclasses of C are not changed in the transforma-
tion, either if in LS or not).

– Let R2
M [S,C,LS ,E] be the set of rules whose labels are not in LS but include

objects of subclasses of C.
– Let R3

M [S,C,LS ,E] be the set of rules whose labels are in LS and include
objects of subclasses C.

Theorem 1. H defines a (strict) simulation map from an instrumented system
specification M [S,C,LS , E] to a system specification S.

Proof. Let →k,M [S,C,LS ,E], with k ∈ {1, 2, 3}, be the transition relation defined

by RkM [S,C,LS ,E]. We differentiate two cases:

– a ∈ GoodSystemM [S,C,LS ,E] is rewritten to a′ ∈ GoodSystemM [S,C,LS ,E] using

a rule in R1
M [S,C,LS ,E], i.e., a →1

1,M [S,C,LS ,E] a
′. Since rules in R1

M [S,C,LS ,E]

do not have monitored objects, H(a) = b ∈ GoodSystemS can be rewritten
to H(a′) = b′ ∈ GoodSystemS using a transition in →S .

– a ∈ GoodSystemM [S,C,LS ,E] is rewritten to a′ ∈ GoodSystemM [S,C,LS ,E] us-

ing a rule L in R2
M [S,C,LS ,E] or R3

M [S,C,LS ,E], i.e. a →1
k,M [S,C,LS ,E] a

′, with
k = 2 or 3. Then the rewritten subterm contains monitored objects that
are removed by H. The rule in RS from which the rule with label L was
generated may then be used to rewrite H(a) = b ∈ GoodSystemS into
H(a′) = b′ ∈ GoodSystemS . ut

Theorem 2. The relation

H−1 : GoodSystemS → GoodSystemM [S,C,LS ,E]

defines a (strict) simulation map from the system specification S to the instru-
mented system M [S,C,LS , E].

Proof. H−1 is a relation from valid states in S to states in M [S,C,LS , E] with
monitor objects. Given a state a ∈ GoodSystemS which by→S may be rewritten
to another state a′ ∈ GoodSystemS . Using H−1, a may be lifted to a possibly
infinite number of states in GoodSystemM [S,C,LS ,E]. Basically, H−1(a) will yield
states where objects of subclasses of C have been wrapped into monitor objects.
All other objects and messages in the configurations will be left as such. The
structure of the monitor objects introduced, including their identifier is fixed,
but their data attribute may take any value in the Data sort. We prove that for
all states b in GoodSystemM [S,C,LS ,E] such that H(a) = b, a transition to a state
H(a′) = b′ in GoodSystemM [S,C,LS ,E] exists in →M [S,C,LS ,E].

We reason by cases:

– if the state a is rewritten into a′ using a rule with no objects of subclasses
of C, then H−1(a) = b ∈ SystemM [S,C,LS ,E] and b is rewritten to some

H−1(a′) = b′ using a rule in R1
M [S,C,LS ,E].

– if the state a is rewritten by a rule whose label is not in LS but that in-
volves objects of subclasses of C, these objects will be wrapped by mon-
itor objects by H−1(a). This is the case in which a state H−1 = b ∈
GoodSystemM [S,C,LS ,E] will be rewritten using a rule in R2

M [S,C,LS ,E]. In
this case, there is an infinite number of possible wrappers since the variable
D is free. However, since the rule label is not in LS, the value of D remains
unchanged, and therefore, the state b transitions to b′ so that H(b′) = a′ in
GoodSystemS .

– if the state a is rewritten using a rule in R3
M [S,C,LS ,E], then a can be lifted

to an infinite number of possible monitor wrappers b ∈ H−1(a). Moreover,
since b will transition using a monitored rule, the value of the attribute data

matters. However, since eval is assumed to be a well-defined total function,
for every value of D of sort Data, the state b can transition to a state b′ such
that H(b′) = a′. ut

Then, since H is a bisimulation of Kripke structures AM [S,C,LS ,E] and AS ,
since strict simulations always reflect satisfaction of CTL∗ formulas [12, The-
orem 2], we have that given any CTL∗ formula φ, and a configuration a ∈
GoodSystemM [S,C,LS ,E],

H(a) |=AS
φ⇐⇒ a |=AM[S,C,LS,E]

φ

6 The throughput monitor

As an example of a global monitor, suppose we want to calculate the number of
messages passing through nodes per time unit. By using the definition of Data

and the eval function in a module extending the MONITOR module as shown in
Figure 5, we may count the number of messages forwarded by rules per time
unit.
In the module THROUGHPUT-MONITOR, sort Data is declared a supersort of 2-tuples
in which the first component keeps the number of messages and the second one

omod THROUGHPUT−MONITOR i s
inc MONITOR .
pr CONVERSION .

sort 2 Tuple .
op ‘{ _ ‘ , _ ‘} : Nat Float −> 2 Tuple [ctor] .
subsort 2 Tuple < Data .

var N : Nat . var T : Time .
var Obj : Object . var Thp : Float .
vars LConf RConf Conf : Configuration . var Msg : Msg .

eq eval ({ N , Thp } , T , Obj , LConf , RConf)
= i f (#msgs (LConf) == #msgs (RConf))

then { N + #msgs (LConf)) ,
float (N + #msgs (LConf)) / float (T) }

else { N , Thp}
fi .

op #msgs : Configuration −> Nat .
eq #msgs (Msg Conf) = s(#msgs (Conf)) .
eq #msgs (Conf) = 0 [owise] .

endom

Fig. 5. Throughput system monitor

the current throughput. We assume that if the number of messages in the left-
and right-hand sides is the same it is because the message is being forwarded,
in which case the number of messages in the data attribute is increased and the
current number of messages is divided by the actual time.

We may rewrite the system using the MONITOR module expression as follows:

rew in MONITOR [SMP , Net , resend−msg , THROUGHPUT−MONITOR] :
{ < mon (n) : @Monitor |

o : < n : Net | elems : (n1 n2 n3 n4 n5 n6 n7) >,
data : {0 , 0 .0} >

< n1 : MsgCreator | targets : (n2 n3 n4 n5 n6 n7) ,
neighbors : (n2 n3 n4 n5 n6) ,
counter : 500 >

< n2 : Node | neighbors : (n1 n3 n7) >
< n3 : Node | neighbors : (n1 n2 n4) >
< n4 : Node | neighbors : (n1 n3 n5) >
< n5 : Node | neighbors : (n1 n4 n6) >
< n6 : Node | neighbors : (n1 n5 n7) >
< n7 : Node | neighbors : (n1 n6 n2) >, 0 } .

result GoodSystem :
{ < n1 : MsgCreator | neighbors : (n2 n3 n4 n5 n6) ,

targets : (n2 n3 n4 n5 n6 n7) ,
counter : 0 >

< n2 : Node | neighbors : (n1 n3 n7) >
< n3 : Node | neighbors : (n1 n2 n4) >
< n4 : Node | neighbors : (n1 n3 n5) >
< n5 : Node | neighbors : (n1 n4 n6) >
< n6 : Node | neighbors : (n1 n5 n7) >
< n7 : Node | neighbors : (n1 n6 n2) >
< mon (n) : @Monitor |

o : < n : Net | elems : (n1 n2 n3 n4 n5 n6 n7) >,
data : { 3683 , 2.9797734627831716 } >,

1238}

The result shows, that for this execution, messages have been re-sent 3683 times,
with around 2.98 messages re-sent per time unit.

7 Conclusions and future work

We have presented a methodology to define monitors that can be added to any
real-time object-oriented system specification.

We have proven that the addition of these generic monitors to a system
specification does not change its behavior. Furthermore, due to properties of
simulations, safety formulas are preserved after instrumenting the specifications.
This assures bisimulation by construction for any monitor and system.

Besides the theoretical results, we have presented a Maude tool which per-
forms the weaving of monitors and specifications, as well as two case studies.
The instrumentation has been implemented as part of Full Maude following its
reflective and extensible design. We have provided a module expression that al-
lows us to instantiate predefined generic monitors in a very simple way, perfectly
integrated with Full Maude. The extended version of Full Maude, and several
examples are available at http://maude.lcc.uma.es/monitors.

There is much work ahead. We believe that the need for indicating the rules
to be monitored may be avoided when the eval functions have all the required
information to decide when the information needs to be computed. Views from
parameter monitors to specific systems may be provided, thus reducing the cou-
pling with monitors and increasing flexibility: we may want to specify monitors
depending on multiple classes or on other parameters. Multiple monitors should
be used on the same systems to monitor different properties on different objects.
First steps towards this kind of composition have already been taken, but the
constructions will be presented elsewhere.

Acknowledgements

This work has been partially supported by Spanish MINECO/FEDER project
TIN2014-52034-R, and Universidad de Málaga, Campus de Excelencia Interna-
cional Andalućıa Tech. Partially supported by NSF Grant CNS 13-19109.

References

1. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.
http://www.labri.fr/perso/casteran/CoqArt/index.html.

2. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: Specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude - A High-Performance Logical Framework: How to Specify,
Program, and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in
Computer Science. Springer, 2007.

4. F. Durán. The extensibility of Maude’s module algebra. In T. Rus, editor, Alge-
braic Methodology and Software Technology, 8th International Conference, AMAST
2000, Iowa City, Iowa, USA, May 20–27, 2000, Proceedings, volume 1816 of Lec-
ture Notes in Computer Science, pages 422–437. Springer, 2000.

5. F. Durán, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving operational
termination of membership equational programs. Higher-Order and Symbolic Com-
putation, 21(1-2):59–88, 2008.

6. F. Durán and J. Meseguer. Maude’s module algebra. Science of Computer Pro-
gramming, 66(2):125–153, April 2007.

7. F. Durán and J. Meseguer. On the Church-Rosser and coherence properties of
conditional order-sorted rewrite theories. J. Log. Algebr. Program., 81(7-8):816–
850, 2012.

8. G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.
9. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assur-

ance based on formal specifications. In H. R. Arabnia, editor, Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications, PDPTA 1999, June 28 - Junlly 1, 1999, Las Vegas, Nevada, USA,
pages 279–287. CSREA Press, 1999.

10. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

11. J. Meseguer. Taming distributed system complexity through formal patterns. Sci.
Comput. Program., 83:3–34, 2014.

12. J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Algebraic simulations. J. Log.
Algebr. Program., 79(2):103–143, 2010.

13. J. Meseguer and C. L. Talcott. Semantic models for distributed object reflection.
In B. Magnusson, editor, ECOOP 2002 - Object-Oriented Programming, 16th Eu-
ropean Conference, Malaga, Spain, June 10-14, 2002, Proceedings, volume 2374 of
Lecture Notes in Computer Science, pages 1–36. Springer, 2002.

14. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20(1-2):161–196, 2007.

15. C. Rocha and J. Meseguer. Proving safety properties of rewrite theories. In A. Cor-
radini, B. Klin, and C. Ĉırstea, editors, Algebra and Coalgebra in Computer Sci-
ence - 4th International Conference, CALCO 2011, Winchester, UK, August 30 -
September 2, 2011. Proceedings, volume 6859 of Lecture Notes in Computer Sci-
ence, pages 314–328. Springer, 2011.

16. J. Troya, A. Vallecillo, F. Durán, and S. Zschaler. Model-driven performance analy-
sis of rule-based domain specific visual models. Information & Software Technology,
55(1):88–110, 2013.

17. S. Zschaler. Formal specification of non-functional properties of component-based
software systems. Software and System Modeling, 9(2):161–201, 2010.

