155 research outputs found

    К 125-летию Иовеля Григорьевича Кутателадзе (1887–1963)

    Get PDF
    Статья посвящена жизни и деятельности И. Г. Кутателадзе — основателя высшего фармацевтического образования и научной фармации в Грузии, выдающегося фармакохимика, основателя и директора Тбилисского научно-исследовательского института фармакохимии, который с 1964 г. носит его имя, председателя научного общества фармацевтов Грузии и академика АН Грузинской ССР. Впервые подробно исследуется одесский период его деятельности.The article is devoted to life and activity of I. G. Kutateladze, founder of higher pharmaceutical education and scientific pharmacy in Georgia, prominent pharmacochemist, founder and director of the Tbilisi Research Institute of Pharmacochemistry, which has had his name since 1964, chairman of scientific society of pharmacists of Georgia and academician of AS of Georgian SSR. The Odessa period of his activity has been studied in details for the first time

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    Species traits interact with stress level to determine intraspecific facilitation and competition

    Get PDF
    Questions Flooding and drought stress are expected to increase significantly across the world and plant responses to these abiotic changes may be mediated by plant–plant interactions. Stress tolerance and recovery often require a biomass investment that may have consequences for these plant–plant interactions. Therefore, we questioned whether phenotypic plasticity in response to flooding and drought affected the balance between competition and facilitation for species with specific adaptations to drought or flooding. Location Utrecht University. Methods Stem elongation, root porosity, root:shoot ratio and biomass production were measured for six species during drought, well-drained and submerged conditions when grown alone or together with conspecifics. We quantified competition and facilitation as the ‘neighbour intensity effect’ directly after the 10-day treatment and again after a seven-day recovery period in well-drained conditions. Results Water stress, planting density and species identity interactively affected standardized stem elongation in a way that could lead to facilitation during submergence for species that preferably grow in wet soils. Root porosity was affected by the interaction between neighbour presence and time-step. Plant traits were only slightly affected during drought. The calculated neighbour interaction effect indicated facilitation for wetland species during submerged conditions and, after a period to recover from flooding, for species that prefer dry habitats. Conclusions Our results imply that changing plant–plant interactions in response to submergence and to a lesser extent to drought should be considered when predicting vegetation dynamics due to changing hydroclimatic regimes. Moreover, facilitation during a recovery period may enable species maladapted to flooding to persist

    Faunal community consequence of interspecific bark trait dissimilarity in early-stage decomposing logs

    Get PDF
    Dead tree trunks have significant ecosystem functions related to biodiversity and biogeochemical cycles. When lying on the soil surface, they are colonized by an array of invertebrate fauna, but what determines their community composition is still unclear. We apply community assembly theory to colonization of tree logs by invertebrates. During early decomposition, the attached bark is critically important as an environment filter for community assembly through habitat provision. Specifically, we hypothesized that the more dissimilar bark traits were between tree species, the more their faunal community compositions would differ. We tested this hypothesis by investigating the effects of bark traits on the invertebrate communities in the early-decomposing logs of 11 common, temperate tree species placed in the ‘common garden’ experiment LOGLIFE. Bark traits included bark looseness, fissure index, outer bark thickness, ratio of inner to outer bark thickness, punch resistance, water storage capacity and bark pH. The predominant faunal groups studied were Annelida, Isopoda, Chilopoda, Diplopoda, Diptera and Coleoptera. Our results showed (i) strong interspecific differences in bark traits, (ii) that bark traits related to environmental buffering had profound effects on the abundance of specific invertebrate groups, and (iii) the higher the overall bark trait dissimilarity between tree species, the more dissimilar these tree species were in faunal community composition, and the higher was the joint invertebrate family richness. A suite of bark traits together has fundamental afterlife effects on invertebrate community assembly, strongly filtering the colonizing invertebrates in early-decomposing logs, driving variation in their community composition and diversity. Our findings indicate that bark trait dissimilarity among tree species in forest stands is likely a better indicator of early-phase dead trunk fauna diversity than tree species diversity per se. A lay summary is available for this article.</p

    Space resource utilization of dominant species integrates abundance- and functional-based processes for better predictions of plant diversity dynamics

    Get PDF
    Sustainable ecosystem management relies on our ability to predict changes in plant diversity and to understand the underlying mechanisms. Empirical evidence demonstrates that abundance- and functional-based processes simultaneously explain the loss of plant diversity in response to human activities. Recently, a novel indicator based on percent cover (CoverD) and maximum height (HeightD) of the dominant plant species – space resource utilization (SRUD) – has proven to give robust and better predictions of plant diversity dynamics than community biomass. Whether the superior predictive ability of SRUD is due to its capacity to simultaneously capture abundance- and functional-based processes remains unknown. Here, we tested this hypothesis by quantifying mechanistic links between changes in SRUD and biodiversity in response to nutrients and herbivores. Furthermore, we assessed the relative contribution of dominant, intermediate and rare species to reduced density of individuals by combining null model analysis with field experiments. We found that SRUD successfully captured changes in ground-level light availability and changes in the number of individuals to predict plant diversity dynamics, and each of CoverD and HeightD partly and independently contributed to both processes. Comparative results from null model analysis and field experiments confirmed that individual losses of dominant, intermediate and rare species followed non-random processes. Specifically, compared with random loss process, rare species lost proportionally more individuals and thus disproportionately contributed to species loss, while dominant and intermediate species lost less. Our results demonstrate that SRUD captures both abundance- and functional-based processes thus explaining why SRUD provides more accurate predictions of changes in species diversity. Given that rare species can play an important role in shaping community structure, resisting against invasion, impacting higher trophic levels and providing multiple ecosystem functions, reducing the SRU of dominant species could alleviate the risk of exclusion of rare species by mitigating abundance- and functional-based competition processes

    Stem traits, compartments and tree species affect fungal communities on decaying wood

    Get PDF
    Dead wood quantity and quality is important for forest biodiversity, by determining wood-inhabiting fungal assemblages. We therefore evaluated how fungal communities were regulated by stem traits and compartments (i.e. bark, outer- and inner wood) of 14 common temperate tree species. Fresh logs were incubated in a common garden experiment in a forest site in the Netherlands. After 1 and 4 years of decay, the fungal composition of different compartments was assessed using Internal Transcribed Spacer amplicon sequencing. We found that fungal alpha diversity differed significantly across tree species and stem compartments, with bark showing significantly higher fungal diversity than wood. Gymnosperms and Angiosperms hold different fungal communities, and distinct fungi were found between inner wood and other compartments. Stem traits showed significant afterlife effects on fungal communities; traits associated with accessibility (e.g. conduit diameter), stem chemistry (e.g. C, N, lignin) and physical defence (e.g. density) were important factors shaping fungal community structure in decaying stems. Overall, stem traits vary substantially across stem compartments and tree species, thus regulating fungal communities and the long-term carbon dynamics of dead trees

    Changing environments during the Middle-Upper Palaeolithic transition in the eastern Cantabrian Region (Spain): direct evidence from stable isotope studies on ungulate bones

    Get PDF
    Environmental change has been proposed as a factor that contributed to the extinction of the Neanderthals in Europe during MIS3. Currently, the different local environmental conditions experienced at the time when Anatomically Modern Humans (AMH) met Neanderthals are not well known. In the Western Pyrenees, particularly, in the eastern end of the Cantabrian coast of the Iberian Peninsula, extensive evidence of Neanderthal and subsequent AMH activity exists, making it an ideal area in which to explore the palaeoenvironments experienced and resources exploited by both human species during the Middle to Upper Palaeolithic transition. Red deer and horse were analysed using bone collagen stable isotope analysis to reconstruct environmental conditions across the transition. A shift in the ecological niche of horses after the Mousterian demonstrates a change in environment, towards more open vegetation, linked to wider climatic change. In the Mousterian, Aurignacian and Gravettian, high inter-individual nitrogen ranges were observed in both herbivores. This could indicate that these individuals were procured from areas isotopically different in nitrogen. Differences in sulphur values between sites suggest some variability in the hunting locations exploited, reflecting the human use of different parts of the landscape. An alternative and complementary explanation proposed is that there were climatic fluctuations within the time of formation of these archaeological levels, as observed in pollen, marine and ice cores.This research was funded by the European Commission through a Marie Curie Career Integration Grant (FP7- PEOPLE-2012-CIG-322112), by the Spanish Ministry of Economy and Competitiveness (HAR2012-33956 and Ramon y Cajal-2011-00695), the University of Cantabria and Campus International to ABMA. Radiocarbon dating at ORAU was funded by MINECO-HAR2012-33956 project. J.J was supported initially by the FP7- PEOPLE-2012-CIG-322112 and later by a Marie Curie Individual Fellowship (H2020-MSCA-IF-2014-656122). Laboratory work, associated research expenses and isotopic analysis were kindly funded by the Max Planck Society to M.R

    Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass‐loss rate and stabilization

    Get PDF
    The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models
    corecore