375 research outputs found

    Characterization of Stem-Like Cells in Mucoepidermoid Tracheal Paediatric Tumor

    Get PDF
    Stem cells contribute to regeneration of tissues and organs. Cells with stem cell-like properties have been identified in tumors from a variety of origins, but to our knowledge there are yet no reports on tumor-related stem cells in the human upper respiratory tract. In the present study, we show that a tracheal mucoepidermoid tumor biopsy obtained from a 6 year-old patient contained a subpopulation of cells with morphology, clonogenicity and surface markers that overlapped with bone marrow mesenchymal stromal cells (BM-MSCs). These cells, designated as MEi (mesenchymal stem cell-like mucoepidermoid tumor) cells, could be differentiated towards mesenchymal lineages both with and without induction, and formed spheroids in vitro. The MEi cells shared several multipotent characteristics with BM-MSCs. However, they displayed differences to BM-MSCs in growth kinectics and gene expression profiles relating to cancer pathways and tube development. Despite this, the MEi cells did not possess in vivo tumor-initiating capacity, as proven by the absence of growth in situ after localized injection in immunocompromised mice. Our results provide an initial characterization of benign tracheal cancer-derived niche cells. We believe that this report could be of importance to further understand tracheal cancer initiation and progression as well as therapeutic development

    TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation

    Get PDF
    Background & Aims: Inflammation, particularly that mediated by bacterial components translocating from the gut to the liver and binding to toll-like receptors (TLRs), is central to cholestatic liver injury. The triggering receptor expressed on myeloid cells-2 (TREM-2) inhibits TLR-mediated signaling and exerts a protective role in hepatocellular injury and carcinogenesis. This study aims to evaluate the role of TREM-2 in cholestasis.Methods: TREM-2 expression was analyzed in the livers of pa-tients with primary biliary cholangitis (PBC) or primary scle-rosing cholangitis (PSC), and in mouse models of cholestasis. Wild-type (WT) and Trem-2 deficient (Trem-2-/-) mice were subjected to experimental cholestasis and gut sterilization. Pri-mary cultured Kupffer cells were incubated with lipopolysac-charide and/or ursodeoxycholic acid (UDCA) and inflammatory responses were analyzed.Results: TREM-2 expression was upregulated in the livers of patients with PBC or PSC, and in murine models of cholestasis. Compared to WT, the response to bile duct ligation (BDL)-induced obstructive cholestasis or alpha-naphtylisothiocyanate (ANIT)-induced cholestasis was exacerbated in Trem-2-/-mice. This was characterized by enhanced necroptotic cell death, in-flammatory responses and biliary expansion. Antibiotic treat-ment partially abrogated the effects observed in Trem-2-/-mice after BDL. Experimental overexpression of TREM-2 in the liver of WT mice downregulated ANIT-induced IL-33 expression and neutrophil recruitment. UDCA regulated Trem-1 and Trem-2 expression in primary cultured mouse Kupffer cells and damp-ened inflammatory gene transcription via a TREM-2-dependent mechanism.Conclusions: TREM-2 acts as a negative regulator of inflamma-tion during cholestasis, representing a novel potential thera-peutic target.Lay summary: Cholestasis (the reduction or cessation of bile flow) causes liver injury. This injury is exacerbated when gut-derived bacterial components interact with receptors (spe-cifically Toll-like receptors or TLRs) on liver-resident immune cells, promoting inflammation. Herein, we show that the anti-inflammatory receptor TREM-2 dampens TLR-mediated signaling and hence protects against cholestasis-induced liver injury. Thus, TREM-2 could be a potential therapeutic target in cholestasis.Spanish Carlos III Health Institute (ISCIII) [J.M. Banales (FIS PI18/01075, PI21/00922 and Miguel Servet Program CPII19/00008); M.J. Perugorria (FIS PI14/00399, PI17/00022 and PI20/00186); J.J.G. Marin (FIS PI16/00598 and PI19/00819); P.M. Rodrigues (Sara Borrell CD19/00254)] cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER); “Instituto de Salud Carlos III” [CIBERehd: M.J. Monte, J.J.G. Marin, J.M. Banales, M.J. Perugorria, P. Aspichueta, P.M. Rodrigues and L. Bujanda], Spain; “Diputación Foral de Gipuzkoa” (M.J. Perugorria: DFG18/114), Department of Health of the Basque Country (M.J. Perugorria: 2019111024, 2015111100 and J.M. Banales: 2021111021), “Euskadi RIS3” (J.M. Banales: 2019222054, 2020333010, 2021333003), and Department of Industry of the Basque Country (J.M. Banales: Elkartek: KK-2020/00008); “Junta de Castilla y Leon” (J.J.G. Marin: SA063P17). La Caixa Scientific Foundation (J.M. Banales: HR17-00601). “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation, to J.M. Banales and J.J.G. Marin); “Centro Internacional sobre el Envejecimiento” (J.J.G. Marin: OLD-HEPAMARKER, 0348_CIE_6_E); Fundació Marato TV3 (J.J.G. Marin: Ref. 201916-31). O Sharif was funded by the Austrian Science Fund (FWF-P35168). Work in the lab of T. Luedde was funded by the European Research Council (ERC) (Grant Agreement 771083), the German Research Foundation (DFG – LU 1360/3-2 (279874820), LU 1360/4-(1461704932) and SFB-CRC 1382-Project A01) and the German Ministry of Health (BMG – DEEP LIVER 2520DAT111). Contributions of M. Marzioni were funded by the Università Politecnica delle Marche PSA2017_UNIVPM grant. Contributions of DAM were supported by programme grants from CRUK (C18342/A23390) and MRC (MR/K0019494/1 and MR/R023026/1). MJ Perugorria was funded by the Spanish Ministry of Economy and Competitiveness (MINECO: “Ramón y Cajal” Programme RYC-2015-17755), I. Labiano, A. Agirre-Lizaso, P. Olaizola, A. Echebarria and F. González-Romero by the Basque Government (PRE_2016_1_0152, PRE_2018_1_0184, PRE_2016_1_0269 PRE_2020_1_0080, PRE_2018_1_0120, respectively), I. Olaizola by the Ministry of Universities (FPU 19/03327) and A. Esparza-Baquer by the University of the Basque Country (PIF2014/11). The funding sources had no involvement in study design, data collection and analysis, decision to publish, or preparation of the article

    Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet

    Get PDF
    Guinea pigs were fed a hypercholesterolemic diet (0.25 g/100 g cholesterol) and randomly allocated either to a Control group (n = 9) or to a Lutein (0.1 g/100 g) group (n = 10) for 12 weeks to evaluate oxidative stress and inflammation in both liver and eyes. Malondialdehyde (MDA) concentrations and inflammatory cytokines were measured as well as hepatic nuclear factor-kappaB (NF-κB) binding. Lutein concentrations were greater in eyes (P < 0.01) and liver (P < 0.001) in the Lutein group. All guinea pigs had high concentrations of hepatic cholesterol as well as high plasma ALT and AST levels indicative of liver injury. However, the Lutein group had 43% lower hepatic free cholesterol than the Controls (P < 0.05). Hepatic MDA and MDA in the eye were lower in the Lutein compared to the Control group (P < 0.05). Hepatic tumor necrosis factor-α was 32% lower in the Lutein group (P < 0.05). Lastly, the Lutein group presented lower NF-κB DNA binding activity than the Control group (P < 0.001). These results suggest that in the presence of high cholesterol, lutein exerts both antioxidant and anti-inflammatory effects, which can be explained by attenuated NF-κB DNA binding activity. Furthermore, results also suggest that lutein accumulates in the eyes of guinea pigs to protect against oxidative stress

    SHARPIN Is Essential for Cytokine Production, NF-κB Signaling, and Induction of Th1 Differentiation by Dendritic Cells

    Get PDF
    Spontaneous mutations of the Sharpin (SHANK-associated RH domain-interacting protein, other aliases: Rbckl1, Sipl1) gene in mice result in systemic inflammation that is characterized by chronic proliferative dermatitis and dysregulated secretion of T helper1 (Th1) and Th2 cytokines. The cellular and molecular mechanisms underlying this inflammatory phenotype remain elusive. Dendritic cells may contribute to the initiation and progression of the phenotype of SHARPIN-deficient mice because of their pivotal role in innate and adaptive immunity. Here we show by flow cytometry that SHARPIN- deficiency did not alter the distribution of different DC subtypes in the spleen. In response to TOLL-like receptor (TLR) agonists LPS and poly I:C, cultured bone marrow-derived dendritic cells (BMDC) from WT and mutant mice exhibited similar increases in expression of co-stimulatory molecules CD40, CD80, and CD86. However, stimulated SHARPIN-deficient BMDC had reduced transcription and secretion of pro-inflammatory mediators IL6, IL12P70, GMCSF, and nitric oxide. Mutant BMDC had defective activation of NF-κB signaling, whereas the MAPK1/3 (ERK1/2) and MAPK11/12/13/14 (p38 MAP kinase isoforms) and TBK1 signaling pathways were intact. A mixed lymphocyte reaction showed that mutant BMDC only induced a weak Th1 immune response but stimulated increased Th2 cytokine production from allogeneic naïve CD4+ T cells. In conclusion, loss of Sharpin in mice significantly affects the immune function of DC and this may partially account for the systemic inflammation and Th2-biased immune response

    Bax Inhibitor-1 down-regulation in the progression of chronic liver diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bax inhibitor-1 (BI-1) is an evolutionary conserved endoplasmic reticulum protein that, when overexpressed in mammalian cells, suppresses the apoptosis induced by Bax, a pro-apoptotic member of the Bcl-2 family. The aims of this study were: (1) to clarify the role of intrinsic anti- and pro-apoptotic mediators, evaluating Bax and BI-1 mRNA and protein expressions in liver tissues from patients with different degrees of liver damage; (2) to determine whether HCV and HBV infections modulate said expression.</p> <p>Methods</p> <p>We examined 62 patients: 39 with chronic hepatitis (CH) (31 HCV-related and 8 HBV-related); 7 with cirrhosis (6 HCV-related and 1 HBV-related); 13 with hepatocellular carcinoma (HCC) [7 in viral cirrhosis (6 HCV- and 1 HBV-related), 6 in non-viral cirrhosis]; and 3 controls. Bax and BI-1 mRNAs were quantified by real-time PCR, and BI-1 protein expression by Western blot.</p> <p>Results</p> <p>CH tissues expressed significantly higher BI-1 mRNA levels than cirrhotic tissues surrounding HCC (P < 0.0001) or HCC (P < 0.0001). Significantly higher Bax transcripts were observed in HCV-genotype-1-related than in HCV-genotype-3-related CH (P = 0.033). A positive correlation emerged between BI-1 and Bax transcripts in CH tissues, even when HCV-related CH and HCV-genotype-1-related CH were considered alone (P = 0.0007, P = 0.0005 and P = 0.0017, respectively).</p> <p>Conclusions</p> <p>BI-1 expression is down-regulated as liver damage progresses. The high BI-1 mRNAs levels observed in early liver disease may protect virus-infected cells against apoptosis, while their progressive downregulation may facilitate hepatocellular carcinogenesis. HCV genotype seems to have a relevant role in Bax transcript expression.</p

    Epithelial NEMO links innate immunity to chronic intestinal inflammation

    Full text link
    Deregulation of intestinal immune responses seems to have a principal function in the pathogenesis of inflammatory bowel disease(1-4). The gut epithelium is critically involved in the maintenance of intestinal immune homeostasis-acting as a physical barrier separating luminal bacteria and immune cells, and also expressing antimicrobial peptides(3,5,6). However, the molecular mechanisms that control this function of gut epithelial cells are poorly understood. Here we show that the transcription factor NF kappa B, a master regulator of pro-inflammatory responses(7,8), functions in gut epithelial cells to control epithelial integrity and the interaction between the mucosal immune system and gut microflora. Intestinal epithelial-cell-specific inhibition of NF-kappa B through conditional ablation of NEMO ( also called I kappa B kinase-gamma ( IKK gamma)) or both IKK1 ( IKK alpha) and IKK2 ( IKK beta)-IKK subunits essential for NF-kappa B activation(7-9)-spontaneously caused severe chronic intestinal inflammation in mice. NF-kappa B deficiency led to apoptosis of colonic epithelial cells, impaired expression of antimicrobial peptides and translocation of bacteria into the mucosa. Concurrently, this epithelial defect triggered a chronic inflammatory response in the colon, initially dominated by innate immune cells but later also involving T lymphocytes. Deficiency of the gene encoding the adaptor protein MyD88 prevented the development of intestinal inflammation, demonstrating that Toll-like receptor activation by intestinal bacteria is essential for disease pathogenesis in this mouse model. Furthermore, NEMO deficiency sensitized epithelial cells to tumour-necrosis factor ( TNF)-induced apoptosis, whereas TNF receptor-1 inactivation inhibited intestinal inflammation, demonstrating that TNF receptor-1 signalling is crucial for disease induction. These findings demonstrate that a primary NF-kappa B signalling defect in intestinal epithelial cells disrupts immune homeostasis in the gastrointestinal tract, causing an inflammatory-bowel-disease-like phenotype. Our results identify NF-kappa B signalling in the gut epithelium as a critical regulator of epithelial integrity and intestinal immune homeostasis, and have important implications for understanding the mechanisms controlling the pathogenesis of human inflammatory bowel disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62858/1/nature05698.pd

    Sharpin Contributes to TNFα Dependent NFκB Activation and Anti-Apoptotic Signalling in Hepatocytes

    Get PDF
    TNFα stimulates both pro- and anti-apoptotic signalling in hepatocytes. Anti-apoptotic signalling depends on a cascade of ubiquitylation steps leading to NFκB activation. Using Sharpin-deficient mice, we show that the ubiquitin binding protein Sharpin interacts with Hoip, an E3 ligase which generates linear ubiquitin chains. Sharpin-deficiency sensitized hepatocytes to induction of apoptosis by TNFα even in the absence of transcriptional inhibition. TNFα induced activation of NFκB was strongly reduced in hepatocytes from Sharpin-deficient mice, due to reduced and delayed phosphorylation and degradation of IκBα. Injection of TNFα-inducing lipopolysaccharides led to strongly exacerbated liver damage and premature death in Sharpin-deficient mice. Our findings point to an essential role of Sharpin in linear ubiquitin chain formation, NFκB activation, and protection of the liver against inflammatory damaging signals
    corecore