571 research outputs found

    Census-based typological usability fragility curves for Italian unreinforced masonry buildings

    Get PDF
    The main vulnerability models available in the literature aim to develop damage fragility curves to estimate the damage level suffered by a building after a seismic event. However, recent earthquakes have highlighted the great importance of predicting the usability of residential buildings, i.e. the condition of a building being habitable or occupiable after a seismic event. The building usability performance can be used as an indicator for allocating economic funding after a seismic event because recent researches have demonstrated a stronger correlation between repair costs and usability assessment rather than between repair costs and structural damage. Therefore, this work focused on the development of census-based fragility curves for the preventive forecast of the usability of Italian unreinforced-masonry buildings. The proposed usability model was calibrated based on the 2009 L'Aquila earthquake database, including almost 60,000 unreinforced-masonry buildings, and this database was increased by adding data from the Italian census to account for uninspected constructions. Six typological classes were defined considering two parameters available both in the post-earthquake and Italian census databases: construction timespan and state of repair. Additionally, it was highlighted in which cases the number of stories was also relevant. The usability fragility curves were defined as a function of peak ground acceleration for two building usability states: partially unusable and unusable. The results confirmed that older buildings are more vulnerable and clearly pointed out the crucial role of the state of repair as a parameter influencing the building usability

    Assessing the effect of tsunami-induced vertical loads on RC frames

    Get PDF
    The increasing number of people, structures and economic activities being exposed to tsunami hazards makes it important to estimate the effects of this hazard on coastal developments. Tsunami onshore flow generates significant loading on buildings and infrastructure, which can lead to structural failure. Literature works recently proposed a non-linear static analysis method, called Variable Depth Pushover (VDPO), for assessing the performance of buildings under the lateral pressures induced by a tsunami onshore flow. This methodology was developed under the assumption that the building is watertight. However, in the case of buildings with breakaway cladding (e.g., masonry infills), the water flow passing through the building induces vertical loads on horizontal structural members, due to uplift and buoyancy pressures, that should be considered during the analysis. Thus, to address this phenomenon, in this paper a numerical investigation is performed considering a combination of tsunami-induced horizontal and vertical loads on a case-study reinforced concrete (RC) moment-resisting frame with breakaway infills, typical of Mediterranean construction. The building model is subjected to a VDPO analysis that applies different types and sizes of vertical loading on the horizontal elements of the building, as the tsunami inundation depth increases. From the results of this analysis, the effects of tsunamiinduced vertical load components on the case-study building in terms of damage propagation and failure mode are discussed, and the significance of considering vertical loading is proven

    E-Defense 2015 ten-story building: beam–column joint assessment according to different code-based design

    Get PDF
    Recent devastating earthquakes worldwide pointed out the importance of seismic detailing and their influence on the observed damage and subsequent repairability of reinforced concrete buildings. Several studies and post-earthquake observations remarked the role of beam–column joints (BCJs) on the global building response and the effectiveness of transverse reinforcement in increasing the joint shear strength and the ultimate deformation. Although number of experimental and theoretical studies focused on the seismic response of BCJs, their mechanical behaviour is still a discussed topic. This resulted in number of design approaches available in worldwide code or standards that lead to different quantity of joint stirrups. This study focuses on the response of BCJs of a 10-story prototype building designed according to Japanese standards and tested in 2015 on the E-Defense shaking table. First the damage assessment at global (building) and local (joint) level is performed at increasing intensities and considering the building in the base slip and base fixed configurations. A refined numerical model is then developed and validated against global and local experimental results. Then, the joint stirrups are re-designed according to different international standards (ACI, EC8, NZS) and different numerical models are developed. The numerical results are then compared in terms of interstorey drift demand and joint shear strain. Finally, a comparison in terms of expected damage varying the design approach of joint stirrups is proposed

    High-fidelity imaging in brain-wide structural studies using light-sheet microscopy

    Get PDF
    Light-sheet microscopy (LSM) has proven a useful tool in neuroscience to image whole brains with high frame rates at cellular resolution and, in combination with tissue clearing methods, is often employed to reconstruct the cyto-architecture over the intact mouse brain. Inherently to LSM, however, residual opaque objects, always present to some extent even in extremely well optically cleared samples, cause stripe artifacts, which, in the best case, severely affect image homogeneity and, in the worst case, completely obscure features of interest. Here, demonstrating two example applications in intact optically cleared mouse brains, we report how Bessel beams reduce streaking artifacts and produce high-fidelity structural data for the brain-wide morphology of neuronal and vascular networks. We found that a third of the imaged volume of the brain was affected by strong striated image intensity inhomogeneity and, furthermore, a significant amount of information content lost with Gaussian illumination was accessible when interrogated with Bessel beams. In conclusion, Bessel beams produce high-fidelity structural data of improved image homogeneity and might significantly relax demands placed on the automated tools to count, trace, or segment fluorescent features of interest

    The Borexino detector at the Laboratori Nazionali del Gran Sasso

    Full text link
    Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI

    Characterization of SABRE crystal NaI-33 with direct underground counting

    Get PDF
    Ultra-pure NaI(Tl) crystals are the key element for a model-independent verification of the long standing DAMA result and a powerful means to search for the annual modulation signature of dark matter interactions. The SABRE collaboration has been developing cutting-edge techniques for the reduction of intrinsic backgrounds over several years. In this paper we report the first characterization of a 3.4 kg crystal, named NaI-33, performed in an underground passive shielding setup at LNGS. NaI-33 has a record low 39^{39}K contamination of 4.3±\pm0.2 ppb as determined by mass spectrometry. We measured a light yield of 11.1±\pm0.2 photoelectrons/keV and an energy resolution of 13.2% (FWHM/E) at 59.5 keV. We evaluated the activities of 226^{226}Ra and 228^{228}Th inside the crystal to be 5.9±0.6μ5.9\pm0.6 \muBq/kg and 1.6±0.3μ1.6\pm0.3 \muBq/kg, respectively, which would indicate a contamination from 238^{238}U and 232^{232}Th at part-per-trillion level. We measured an activity of 0.51±\pm0.02 mBq/kg due to 210^{210}Pb out of equilibrium and a α\alpha quenching factor of 0.63±\pm0.01 at 5304 keV. We illustrate the analyses techniques developed to reject electronic noise in the lower part of the energy spectrum. A cut-based strategy and a multivariate approach indicated a rate, attributed to the intrinsic radioactivity of the crystal, of \sim1 count/day/kg/keV in the [5-20] keV region

    Characterization of SABRE crystal NaI-33 with direct underground counting

    Get PDF
    Published online: 09 April 2021Ultra-pure NaI(Tl) crystals are the key element for a model-independent verification of the long standing DAMA result and a powerful means to search for the annual modulation signature of dark matter interactions. The SABRE collaboration has been developing cutting-edge techniques for the reduction of intrinsic backgrounds over several years. In this paper we report the first characterization of a 3.4 kg crystal, named NaI-33, performed in an underground passive shielding setup at LNGS. NaI-33 has a record low ³⁹K contamination of 4.3 ± 0.2 ppb as determined by mass spectrometry. We measured a light yield of 11.1 ± 0.2 photoelectrons/keV and an energy resolution of 13.2% (FWHM/E) at 59.5 keV. We evaluated the activities of ²²⁶Ra and ²²⁸Th inside the crystal to be 5.9±0.6 μBq/kg and 1.6±0.3 μBq/kg, respectively, which would indicate a contamination from ²³⁸U and ²³²Th at part-per-trillion level. We measured an activity of 0.51 ± 0.02 mBq/kg due to ²¹⁰Pb out of equilibrium and a α quenching factor of 0.63 ± 0.01 at 5304 keV. We illustrate the analyses techniques developed to reject electronic noise in the lower part of the energy spectrum. A cut-based strategy and a multivariate approach indicated a rate, attributed to the intrinsic radioactivity of the crystal, of ∼1 count/day/kg/keV in the [5–20] keV region.M. Antonello ... I. Bolognino ... A. G. Williams ... et al

    Novel techniques for alpha/beta pulse shape discrimination in Borexino

    Full text link
    Borexino could efficiently distinguish between alpha and beta radiation in its liquid scintillator by the characteristic time profile of their scintillation pulse. This alpha/beta discrimination, first demonstrated at the tonne scale in the Counting Test Facility prototype, was used throughout the lifetime of the experiment between 2007 and 2021. With this method, alpha events are identified and subtracted from the beta-like solar neutrino events. This is particularly important in liquid scintillator as alpha scintillation is quenched many-fold. In Borexino, the prominent Po-210 decay peak was a background in the energy range of electrons scattered from Be-7 solar neutrinos. Optimal alpha-beta discrimination was achieved with a "multi-layer perceptron neural network", which its higher ability to leverage the timing information of the scintillation photons detected by the photomultiplier tubes. An event-by-event, high efficiency, stable, and uniform pulse shape discrimination was essential in characterising the spatial distribution of background in the detector. This benefited most Borexino measurements, including solar neutrinos in the \pp chain and the first direct observation of the CNO cycle in the Sun. This paper presents the key milestones in alpha/beta discrimination in Borexino as a term of comparison for current and future large liquid scintillator detectorsComment: 13 pages, 14 figure
    corecore