31 research outputs found

    The Regulatory Network of Natural Competence and Transformation of Vibrio cholerae

    Get PDF
    The human pathogen Vibrio cholerae is an aquatic bacterium frequently encountered in rivers, lakes, estuaries, and coastal regions. Within these environmental reservoirs, the bacterium is often found associated with zooplankton and more specifically with their chitinous exoskeleton. Upon growth on such chitinous surfaces, V. cholerae initiates a developmental program termed “natural competence for genetic transformation.” Natural competence for transformation is a mode of horizontal gene transfer in bacteria and contributes to the maintenance and evolution of bacterial genomes. In this study, we investigated competence gene expression within this organism at the single cell level. We provide evidence that under homogeneous inducing conditions the majority of the cells express competence genes. A more heterogeneous expression pattern was observable on chitin surfaces. We hypothesize that this was the case due to the heterogeneity around the chitin surface, which might vary extensively with respect to chitin degradation products and autoinducers; these molecules contribute to competence induction based on carbon catabolite repression and quorum-sensing pathways, respectively. Therefore, we investigated the contribution of these two signaling pathways to natural competence in detail using natural transformation assays, transcriptional reporter fusions, quantitative RT–PCR, and immunological detection of protein levels using Western blot analysis. The results illustrate that all tested competence genes are dependent on the transformation regulator TfoX. Furthermore, intracellular cAMP levels play a major role in natural transformation. Finally, we demonstrate that only a minority of genes involved in natural transformation are regulated in a quorum-sensing-dependent manner and that these genes determine the fate of the surrounding DNA. We conclude with a model of the regulatory circuit of chitin-induced natural competence in V. cholerae

    Glucose- but Not Rice-Based Oral Rehydration Therapy Enhances the Production of Virulence Determinants in the Human Pathogen Vibrio cholerae

    Get PDF
    Despite major attempts to prevent cholera transmission, millions of people worldwide still must address this devastating disease. Cholera research has so far mainly focused on the causative agent, the bacterium Vibrio cholerae, or on disease treatment, but rarely were results from both fields interconnected. Indeed, the treatment of this severe diarrheal disease is mostly accomplished by oral rehydration therapy (ORT), whereby water and electrolytes are replenished. Commonly distributed oral rehydration salts also contain glucose. Here, we analyzed the effects of glucose and alternative carbon sources on the production of virulence determinants in the causative agent of cholera, the bacterium Vibrio cholerae during in vitro experimentation. We demonstrate that virulence gene expression and the production of cholera toxin are enhanced in the presence of glucose or similarly transported sugars in a ToxR-, TcpP- and ToxT-dependent manner. The virulence genes were significantly less expressed if alternative non-PTS carbon sources, including rice-based starch, were utilized. Notably, even though glucose-based ORT is commonly used, field studies indicated that rice-based ORT performs better. We therefore used a spatially explicit epidemiological model to demonstrate that the better performing rice-based ORT could have a significant impact on epidemic progression based on the recent outbreak of cholera in Haiti. Our results strongly support a change of carbon source for the treatment of cholera, especially in epidemic settings

    Concorso per un Edificio polifunzionale a Universit\ue0 della Calabria, Arcavacata Rende (CS)

    No full text
    L'articolo contiene i disegni del progetto per il Concorso per un Edificio polifunzionale a Universit\ue0 della Calabria, Arcavacata Rende (CS

    Piano mirato di prevenzione: Fonderie e lavorazione a caldo dei metalli

    No full text
    Obiettivi e fasi del PMP - Azioni e strumenti di assistenza alle imprese - Trasferimento e monitoriaggio - Risultat

    Advances in the rehabilitation of intensive care unit acquired weakness: A case report on the promising use of robotics and virtual reality coupled to physiotherapy

    No full text
    INTRODUCTION: Traditional physiotherapy is currently the best approach to manage patients with intensive care unit acquired weakness (ICUAW). We report on a patient with ICUAW, who was provided with an intensive, in-patient regimen, that is, conventional plus robot-assisted physiotherapy. Aim of this case study was to assess the efficacy of a combined approach (conventional plus robot-assisted physiotherapy), on muscle strength, overall mobility, and disability burden in a patient with ICUAW in post-ICU intensive rehabilitation setting. PATIENT CONCERNS: A 56-years-old male who was unable to stand and walk independently after hospitalization in an Intensive Care Unit. He initially was provided with daily sessions of conventional physiotherapy for 2 months, with mild results. DIAGNOSIS: The patient was affected by ICUAW. INTERVENTION: Given that the patient showed a relatively limited improvement after conventional physiotherapy, he was provided with daily sessions of robot-aided training for upper and lower limbs and virtual reality-aided rehabilitation for other 4 months, beyond conventional physiotherapy. OUTCOMES: At the discharge (6 months after the admission), the patient reached the standing station and was able to ambulate with double support. CONCLUSIONS: Our case suggests that patients with ICUAW should be intensively treated in in-patient regimen with robot-aided physiotherapy. Even though our approach deserves confirmation, the combined rehabilitation strategy may offer some advantage in maximizing functional recovery and containing disability

    Phosphatidylinositol 3-kinase inhibition restores Ca2+ release defects and prolongs survival in myotubularin-deficient mice

    No full text
    International audienceMutations in the gene encoding the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for a pediatric disease of skeletal muscle named myotubular myopathy (XLMTM). Muscle fibers from MTM1-deficient mice present defects in excitation-contraction (EC) coupling likely responsible for the disease-associated fatal muscle weakness. However, the mechanism leading to EC coupling failure remains unclear. During normal skeletal muscle EC coupling, transverse (t) tubule depolarization triggers sarcoplasmic reticulum (SR) Ca2+ release through ryanodine receptor channels gated by conformational coupling with the t-tubule voltage-sensing dihydropyridine receptors. We report that MTM1 deficiency is associated with a 60% depression of global SR Ca2+ release over the full range of voltage sensitivity of EC coupling. SR Ca2+ release in the diseased fibers is also slower than in normal fibers, or delayed following voltage activation, consistent with the contribution of Ca2+-gated ryanodine receptors to EC coupling. In addition, we found that SR Ca2+ release is spatially heterogeneous within myotubularin-deficient muscle fibers, with focally defective areas recapitulating the global alterations. Importantly, we found that pharmacological inhibition of phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity rescues the Ca2+ release defects in isolated muscle fibers and increases the lifespan and mobility of XLMTM mice, providing proof of concept for the use of PtdIns 3-kinase inhibitors in myotubular myopathy and suggesting that unbalanced PtdIns 3-kinase activity plays a critical role in the pathological process

    Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae

    No full text
    Natural transformation is a broadly conserved mechanism of horizontal gene transfer in bacterial species that can shape evolution and foster the spread of antibiotic resistance determinants, promote antigenic variation, and lead to the acquisition of novel virulence factors. Surface appendages called competence pili promote DNA uptake during the first step of natural transformation1 , however, their mechanism of action has remained unclear due to an absence of methods to visualize these structures in live cells. Here, using the model naturally transformable species Vibrio cholerae and a pilus labeling method, we define the mechanism for type IV competence pilus-mediated DNA uptake during natural transformation. First, we show that type IV competence pili bind to extracellular doublestranded DNA via their tip and demonstrate that this binding is critical for DNA uptake. Next, we show that type IV competence pili are dynamic structures and that pilus retraction brings tip-bound DNA to the cell surface. Finally, we show that pilus retraction is spatiotemporally coupled to DNA internalization and that sterically obstructing pilus retraction prevents DNA uptake. Together, these results indicate that type IV competence pili directly bind DNA via their tip and mediate DNA internalization through retraction during this conserved mechanism of horizontal gene transfe
    corecore