56 research outputs found

    Работа с текстом по специальности как средство обучения языку профессионального общения

    Get PDF
    The quickly rising atmospheric carbon dioxide (CO2)‐levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar species (Populus alba L. clone 2AS‐11, Populus nigra L. clone Jean Pourtet and Populus×euramericana clone I‐214). Trees were growing in a high‐density coppice plantation during the second rotation (i.e., regrowth after coppice; 2002–2004; POPFACE/EUROFACE). Six plots were studied, half of which were continuously fumigated with CO2 (FACE; free air carbon dioxide enrichment of 550 ppm). Half of each plot was fertilized to study the interaction between CO2 and nutrient fertilization. At the end of the second rotation, selective above‐ and belowground harvests were performed to estimate the productivity of this bio‐energy plantation. Fertilization did not affect growth of the poplar trees, which was likely because of the high rates of fertilization during the previous agricultural land use. In contrast, elevated CO2 enhanced biomass production by up to 29%, and this stimulation did not differ between above‐ and belowground parts. The increased initial stump size resulting from elevated CO2 during the first rotation (1999–2001) could not solely explain the observed final biomass increase. The larger leaf area index after canopy closure and the absence of any major photosynthetic acclimation after 6 years of fumigation caused the sustained CO2‐induced biomass increase after coppice. These results suggest that, under future CO2 concentrations, managed poplar coppice systems may exhibit higher potential for C sequestration and, thus, help mitigate climate change when used as a source of C‐neutral energy

    Soil Respiration in Relation to Photosynthesis of Quercus mongolica Trees at Elevated CO2

    Get PDF
    Knowledge of soil respiration and photosynthesis under elevated CO2 is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO2-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO2 (EC = 500 µmol mol−1) and ambient CO2 (AC = 370 µmol mol−1) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO2 m−2 hr−1 at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO2 m−2 hr−1 at AC) in 2008, and increased the daytime CO2 assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO2 m−2 hr−1 at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO2 fixation of plants in a CO2-rich world will rapidly return to the atmosphere by increased soil respiration

    Konvensyen Myprospec tumpu revolusi industri 4.0

    Get PDF
    Rising atmospheric concentrations of CO 2 (C a) can reduce stomatal conductance and transpiration rate in trees, but the magnitude of this effect varies considerably among experiments. The theory of optimal stomatal behaviour predicts that the ratio of photosynthesis to transpiration (instantaneous transpiration efficiency, ITE) should increase in proportion to C a. We hypothesized that plants regulate stomatal conductance optimally in response to rising C a. We tested this hypothesis with data from young Eucalyptus saligna Sm. trees grown in 12 climate-controlled whole-tree chambers for 2 years at ambient and elevated C a. Elevated C a was ambient + 240 ppm, 60% higher than ambient C a. Leaf-scale gas exchange was measured throughout the second year of the study and leaf-scale ITE increased by 60% under elevated C a, as predicted. Values of leaf-scale ITE depended strongly on vapour pressure deficit (D) in both CO 2 treatments. Whole-canopy CO 2 and H 2O fluxes were also monitored continuously for each chamber throughout the second year. There were small differences in D between C a treatments, which had important effects on values of canopy-scale ITE. However, when C a treatments were compared at the same D, canopy-scale ITE was consistently increased by 60%, again as predicted. Importantly, leaf and canopy-scale ITE were not significantly different, indicating that ITE was not scale-dependent. Observed changes in transpiration rate could be explained on the basis that ITE increased in proportion to C a. The effect of elevated C a on photosynthesis increased with rising D. At high D, C a had a large effect on photosynthesis and a small effect on transpiration rate. At low D, in contrast, there was a small effect of C a on photosynthesis, but a much larger effect on transpiration rate. If shown to be a general response, the proportionality of ITE with C a will allow us to predict the effects of C a on transpiration rate
    corecore