300 research outputs found

    Uromodulin concentrations are not associated with incident CKD among persons with coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A common variant of the UMOD gene was linked with prevalent chronic kidney disease (CKD) in large, genomics consortia. One community-based study found that urine concentrations of the uromodulin protein forecast risk of incident CKD. This study within persons with known coronary artery disease (CAD) evaluated whether uromodulin concentrations could distinguish CKD risk.</p> <p>Methods</p> <p>In the Heart and Soul Study, the UMOD snp (12917707) was genotyped in 879 individuals with baseline creatinine clearance (CrCl) measured from a 24-hour urine collection. Uromodulin protein was measured from stored urine specimens among a subset of 120 participants, balanced by genotype. Incident CKD cases (N = 102) were defined by an initial CrCl > 70 ml/min and a 5-year follow-up CrCl <60 ml/min; controls (N = 94) were matched on age, sex, and race.</p> <p>Results</p> <p>Among 527 self-described White participants with DNA, 373 (71%) were homozygous for the dominant allele (G/G), 133 (25%) were heterozygous (G/T) and only 21 (4%) were homozygous for the minor allele (T/T). The T/T genotype had an approximately 11 ml/min higher CrCl than the other 2 groups, but this difference did not reach statistical significance (p = 0.20). The T/T genotype had significantly lower uromodulin levels than the common G/G genotype, and the G/T genotype had intermediate levels. However, uromodulin concentrations were similar between cases and controls (44 vs. 48 mg/dL, p = 0.88).</p> <p>Conclusions</p> <p>This study among a cohort of persons with established CAD found no association between urine uromodulin and incident CKD, although UMOD genotype was associated with urine uromodulin concentrations.</p

    Drosophila Sperm Swim Backwards in the Female Reproductive Tract and Are Activated via TRPP2 Ion Channels

    Get PDF
    Sperm have but one purpose, to fertilize an egg. In various species including Drosophila melanogaster female sperm storage is a necessary step in the reproductive process. Amo is a homolog of the human transient receptor potential channel TRPP2 (also known as PKD2), which is mutated in autosomal dominant polycystic kidney disease. In flies Amo is required for sperm storage. Drosophila males with Amo mutations produce motile sperm that are transferred to the uterus but they do not reach the female storage organs. Therefore Amo appears to be a mediator of directed sperm motility in the female reproductive tract but the underlying mechanism is unknown.Amo exhibits a unique expression pattern during spermatogenesis. In spermatocytes, Amo is restricted to the endoplasmic reticulum (ER) whereas in mature sperm, Amo clusters at the distal tip of the sperm tail. Here we show that flagellar localization of Amo is required for sperm storage. This raised the question of how Amo at the rear end of sperm regulates forward movement into the storage organs. In order to address this question, we used in vivo imaging of dual labelled sperm to demonstrate that Drosophila sperm navigate backwards in the female reproductive tract. In addition, we show that sperm exhibit hyperactivation upon transfer to the uterus. Amo mutant sperm remain capable of reverse motility but fail to display hyperactivation and directed movement, suggesting that these functions are required for sperm storage in flies.Amo is part of a signalling complex at the leading edge of the sperm tail that modulates flagellar beating and that guides a backwards path into the storage organs. Our data support an evolutionarily conserved role for TRPP2 channels in cilia

    Variants of GCKR Affect Both β-Cell and Kidney Function in Patients With Newly Diagnosed Type 2 Diabetes: The Verona Newly Diagnosed Type 2 Diabetes Study 2

    Get PDF
    In genome-wide association studies, performed mostly in nondiabetic individuals, genetic variability of glucokinase regulatory protein (GCKR) affects type 2 diabetes-relatedphenotypes, kidney function, and risk of chronic kidney disease (CKD). We tested whether GCKR variability affects type 2 diabetes or kidney-related phenotypes in newly diagnosed type 2diabetes. In 509 GAD-negative patients with newly diagnosedtype 2 diabetes,we 1) genotyped six single nucleotide polymorphisms in GCKR genomic region: rs6717980, rs1049817, rs6547626, rs780094, rs2384628, and rs8731; 2) assessedclinical phenotypes, insulin sensitivity by the euglycemic insulin clamp, and b-cell function by state-of-the-art modeling of glucose/C-peptide curves during an oral glucose tolerance test;and 3) estimated glomerular filtration rate (eGFR) by the Modification of Diet in Renal Disease formula.The major alleles of rs6717980 and rs2384628 were associated with reduced b-cell function (P<0.05), with mutual additive effects of each variant (P<0.01). The minoralleles of rs1049817 and rs6547626 and the major allele of rs780094 were associated withreduced eGFR according to a recessive model (P<0.03), but with no mutual additive effects of the variants. Additional associations were found between rs780094 and 2-h plasma glucose(P<0.05) and rs8731 and insulin sensitivity (P<0.05) and triglycerides (P<0.05). Our findings are compatible with the idea that GCKR variability may play a pathogenetic role in both type 2 diabetes and CKD. Genotyping GCKR in patients withnewly diagnosed type 2 diabetes might help in identifying patients at high risk for metabolic derangements or CKD

    Association of Estimated Glomerular Filtration Rate and Urinary Uromodulin Concentrations with Rare Variants Identified by UMOD Gene Region Sequencing

    Get PDF
    Background: Recent genome-wide association studies (GWAS) have identified common variants in the UMOD region associated with kidney function and disease in the general population. To identify novel rare variants as well as common variants that may account for this GWAS signal, the exons and 4 kb upstream region of UMOD were sequenced. Methodology/Principal Findings Individuals (n = 485) were selected based on presence of the GWAS risk haplotype and chronic kidney disease (CKD) in the ARIC Study and on the extremes of of the UMOD gene product, uromodulin, in urine (Tamm Horsfall protein, THP) in the Framingham Heart Study (FHS). Targeted sequencing was conducted using capillary based Sanger sequencing (3730 DNA Analyzer). Variants were tested for association with THP concentrations and estimated glomerular filtration rate (eGFR), and identified non-synonymous coding variants were genotyped in up to 22,546 follow-up samples. Twenty-four and 63 variants were identified in the 285 ARIC and 200 FHS participants, respectively. In both studies combined, there were 33 common and 54 rare (MAF<0.05) variants. Five non-synonymous rare variants were identified in FHS; borderline enrichment of rare variants was found in the extremes of THP (SKAT p-value = 0.08). Only V458L was associated with THP in the FHS general-population validation sample (p = 9*103^{−3}, n = 2,522), but did not show direction-consistent and significant association with eGFR in both the ARIC (n = 14,635) and FHS (n = 7,520) validation samples. Pooling all non-synonymous rare variants except V458L together showed non-significant associations with THP and eGFR in the FHS validation sample. Functional studies of V458L revealed no alternations in protein trafficking. Conclusions/Significance: Multiple novel rare variants in the UMOD region were identified, but none were consistently associated with eGFR in two independent study samples. Only V458L had modest association with THP levels in the general population and thus could not account for the observed GWAS signal

    Genetic polymorphisms located in genes related to immune and inflammatory processes are associated with end-stage renal disease: a preliminary study

    Get PDF
    Background Chronic kidney disease progression has been linked to pro-inflammatory cytokines and markers of inflammation. These markers are also elevated in end-stage renal disease (ESRD), which constitutes a serious public health problem. Objective To investigate whether single nucleotide polymorphisms (SNPs) located in genes related to immune and inflammatory processes, could be associated with ESRD development. Design and methods A retrospective case-control study was carried out on 276 patients with ESRD and 288 control subjects. Forty-eight SNPs were genotyped via SNPlex platform. Logistic regression was used to assess the relationship between each sigle polymorphism and the development of ESRD. Results Four polymorphisms showed association with ESRD: rs1801275 in the interleukin 4 receptor (IL4R) gene (OR: 0.66 (95%CI=0.46-0.95); p=0.025; overdominant model), rs4586 in chemokine (C-C motif) ligand 2 (CCL2) gene (OR: 0.70 (95%CI=0.54-0.90); p=0.005; additive model), rs301640 located in an intergenic binding site for signal transducer and activator of transcription 4 (STAT4) (OR: 1.82 (95%CI=1.17-2.83); p=0.006; additive model) and rs7830 in the nitric oxide synthase 3 (NOS3) gene (OR: 1.31 (95%CI=1.01-1.71); p=0.043; additive model). After adjusting for multiple testing, results lost significance. Conclusion Our preliminary data suggest that four genetic polymorphisms located in genes related to inflammation and immune processes could help to predict the risk of developing ESRD.This work was supported by grants from Instituto de Salud Carlos III (Ref: PI08/0738 and PI11/00245) to SR and Junta de Castilla y Leon (Ref: GRS 234/A/08) to ET. MAJS is supported by a grant from Instituto de Salud Carlos III (CM10/00105).Jimenez-Sousa, MA.; López, E.; Fernandez-Rodriguez, A.; Tamayo, E.; Fernández-Navarro, P.; Segura Roda, L.; Heredia, M.... (2012). Genetic polymorphisms located in genes related to immune and inflammatory processes are associated with end-stage renal disease: a preliminary study. BMC Medical Genetics. 13(58):1-6. https://doi.org/10.1186/1471-2350-13-58S161358Otero A, de Francisco A, Gayoso P, Garcia F: Prevalence of chronic renal disease in Spain: results of the EPIRCE study. Nefrologia. 2010, 30 (1): 78-86.Kottgen A: Genome-wide association studies in nephrology research. Am J Kidney Dis. 2010, 56 (4): 743-758. 10.1053/j.ajkd.2010.05.018.Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, Jong PE, Coresh J, de Jong PE, El-Nahas M, et al: Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes in both general and high-risk populations. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011, 80 (1): 93-104. 10.1038/ki.2010.531.Reich HN, Gladman DD, Urowitz MB, Bargman JM, Hladunewich MA, Lou W, Fan SC, Su J, Herzenberg AM, Cattran DC, et al: Persistent proteinuria and dyslipidemia increase the risk of progressive chronic kidney disease in lupus erythematosus. Kidney Int. 2011, 9 (8): 914-920.Rao M, Wong C, Kanetsky P, Girndt M, Stenvinkel P, Reilly M, Raj DS: Cytokine gene polymorphism and progression of renal and cardiovascular diseases. Kidney Int. 2007, 72 (5): 549-556. 10.1038/sj.ki.5002391.Munshi R, Hsu C, Himmelfarb J: Advances in understanding ischemic acute kidney injury. BMC Med. 2011, 9 (1): 11-10.1186/1741-7015-9-11.Kottgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, et al: New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010, 42 (5): 376-384. 10.1038/ng.568.Chambers JC, Zhang W, Lord GM, van der Harst P, Lawlor DA, Sehmi JS, Gale DP, Wass MN, Ahmadi KR, Bakker SJ, et al: Genetic loci influencing kidney function and chronic kidney disease. Nat Genet. 2010, 42 (5): 373-375. 10.1038/ng.566.Ribases M, Ramos-Quiroga JA, Sanchez-Mora C, Bosch R, Richarte V, Palomar G, Gastaminza X, Bielsa A, Arcos-Burgos M, Muenke M, et al: Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study. Genes Brain Behav. 2010, 10 (2): 149-157.Sole X, Guino E, Valls J, Iniesta R, Moreno V: SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006, 22 (15): 1928-1929. 10.1093/bioinformatics/btl268.Fried L, Solomon C, Shlipak M, Seliger S, Stehman-Breen C, Bleyer AJ, Chaves P, Furberg C, Kuller L, Newman A: Inflammatory and prothrombotic markers and the progression of renal disease in elderly individuals. J Am Soc Nephrol. 2004, 15 (12): 3184-3191. 10.1097/01.ASN.0000146422.45434.35.Wolkow PP, Niewczas MA, Perkins B, Ficociello LH, Lipinski B, Warram JH, Krolewski AS: Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol. 2008, 19 (4): 789-797. 10.1681/ASN.2007050556.Nakamura E, Megumi Y, Kobayashi T, Kamoto T, Ishitoya S, Terachi T, Tachibana M, Matsushiro H, Habuchi T, Kakehi Y, et al: Genetic polymorphisms of the interleukin-4 receptor alpha gene are associated with an increasing risk and a poor prognosis of sporadic renal cell carcinoma in a Japanese population. Clin Cancer Res. 2002, 8 (8): 2620-2625.Burgos PI, Causey ZL, Tamhane A, Kelley JM, Brown EE, Hughes LB, Danila MI, van Everdingen A, Conn DL, Jonas BL, et al: Association of IL4R single-nucleotide polymorphisms with rheumatoid nodules in African Americans with rheumatoid arthritis. Arthritis Res Ther. 2010, 12 (3): R75-10.1186/ar2994.Tachdjian R, Mathias C, Al Khatib S, Bryce PJ, Kim HS, Blaeser F, O'Connor BD, Rzymkiewicz D, Chen A, Holtzman MJ, et al: Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma. J Exp Med. 2009, 206 (10): 2191-2204. 10.1084/jem.20091480.Zheng G, Wang Y, Xiang SH, Tay YC, Wu H, Watson D, Coombes J, Rangan GK, Alexander SI, Harris DC: DNA vaccination with CCL2 DNA modified by the addition of an adjuvant epitope protects against "nonimmune" toxic renal injury. J Am Soc Nephrol. 2006, 17 (2): 465-474. 10.1681/ASN.2005020164.Kang YS, Lee MH, Song HK, Ko GJ, Kwon OS, Lim TK, Kim SH, Han SY, Han KH, Lee JE, et al: CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int. 2010, 78 (9): 883-894. 10.1038/ki.2010.263.Dai R, Ahmed SA: MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res. 2011, 157 (4): 163-179. 10.1016/j.trsl.2011.01.007.Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM: PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002, 18 (2): 333-334. 10.1093/bioinformatics/18.2.333.Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, Messeguer X: Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003, 31 (13): 3651-3653. 10.1093/nar/gkg605.Wei L, Vahedi G, Sun HW, Watford WT, Takatori H, Ramos HL, Takahashi H, Liang J, Gutierrez-Cruz G, Zang C, et al: Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity. 2010, 32 (6): 840-851. 10.1016/j.immuni.2010.06.003.Nakayama T, Sato W, Kosugi T, Zhang L, Campbell-Thompson M, Yoshimura A, Croker BP, Johnson RJ, Nakagawa T: Endothelial injury due to eNOS deficiency accelerates the progression of chronic renal disease in the mouse. Am J Physiol Renal Physiol. 2009, 296 (2): F317-327.Webber JL, Tooze SA: New insights into the function of Atg9. FEBS Lett. 2010, 584 (7): 1319-1326. 10.1016/j.febslet.2010.01.020.Kullo IJ, Greene MT, Boerwinkle E, Chu J, Turner ST, Kardia SL: Association of polymorphisms in NOS3 with the ankle-brachial index in hypertensive adults. Atherosclerosis. 2008, 196 (2): 905-912. 10.1016/j.atherosclerosis.2007.02.008.Popov AF, Hinz J, Schulz EG, Schmitto JD, Wiese CH, Quintel M, Seipelt R, Schoendube FA: The eNOS 786C/T polymorphism in cardiac surgical patients with cardiopulmonary bypass is associated with renal dysfunction. Eur J Cardiothorac Surg. 2009, 36 (4): 651-656. 10.1016/j.ejcts.2009.04.049.Wang CH, Li F, Hiller S, Kim HS, Maeda N, Smithies O, Takahashi N: A modest decrease in endothelial NOS in mice comparable to that associated with human NOS3 variants exacerbates diabetic nephropathy. Proc Natl Acad Sci U S A. 2011, 108 (5): 2070-2075. 10.1073/pnas.1018766108.Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C: Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009, 37 (9): e67-10.1093/nar/gkp215.Sironi M, Menozzi G, Riva L, Cagliani R, Comi GP, Bresolin N, Giorda R, Pozzoli U: Silencer elements as possible inhibitors of pseudoexon splicing. Nucleic Acids Res. 2004, 32 (5): 1783-1791. 10.1093/nar/gkh341.Perneger TV: What's wrong with Bonferroni adjustments. BMJ. 1998, 316 (7139): 1236-1238. 10.1136/bmj.316.7139.1236.Sterne JA, Davey Smith G: Sifting the evidence-what's wrong with significance tests?. BMJ. 2001, 322 (7280): 226-231. 10.1136/bmj.322.7280.226

    Differential Effects of MYH9 and APOL1 Risk Variants on FRMD3 Association with Diabetic ESRD in African Americans

    Get PDF
    Single nucleotide polymorphisms (SNPs) in MYH9 and APOL1 on chromosome 22 (c22) are powerfully associated with non-diabetic end-stage renal disease (ESRD) in African Americans (AAs). Many AAs diagnosed with type 2 diabetic nephropathy (T2DN) have non-diabetic kidney disease, potentially masking detection of DN genes. Therefore, genome-wide association analyses were performed using the Affymetrix SNP Array 6.0 in 966 AA with T2DN and 1,032 non-diabetic, non-nephropathy (NDNN) controls, with and without adjustment for c22 nephropathy risk variants. No associations were seen between FRMD3 SNPs and T2DN before adjusting for c22 variants. However, logistic regression analysis revealed seven FRMD3 SNPs significantly interacting with MYH9—a finding replicated in 640 additional AA T2DN cases and 683 NDNN controls. Contrasting all 1,592 T2DN cases with all 1,671 NDNN controls, FRMD3 SNPs appeared to interact with the MYH9 E1 haplotype (e.g., rs942280 interaction p-value = 9.3E−7 additive; odds ratio [OR] 0.67). FRMD3 alleles were associated with increased risk of T2DN only in subjects lacking two MYH9 E1 risk haplotypes (rs942280 OR = 1.28), not in MYH9 E1 risk allele homozygotes (rs942280 OR = 0.80; homogeneity p-value = 4.3E−4). Effects were weaker stratifying on APOL1. FRMD3 SNPS were associated with T2DN, not type 2 diabetes per se, comparing AAs with T2DN to those with diabetes lacking nephropathy. T2DN-associated FRMD3 SNPs were detectable in AAs only after accounting for MYH9, with differential effects for APOL1. These analyses reveal a role for FRMD3 in AA T2DN susceptibility and accounting for c22 nephropathy risk variants can assist in detecting DN susceptibility genes

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE-Glycated hemoglobin (HbA(1c)), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA(1c). We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA(1c) levels.RESEARCH DESIGN AND METHODS-We studied associations with HbA(1c) in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA(1c) loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.RESULTS-Ten loci reached genome-wide significant association with HbA(1c), including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 x 10(-26)), HFE (rs1800562/P = 2.6 x 10(-20)), TMPRSS6 (rs855791/P = 2.7 x 10(-14)), ANK1 (rs4737009/P = 6.1 x 10(-12)), SPTA1 (rs2779116/P = 2.8 x 10(-9)) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 x 10(-9)), and four known HbA(1c) loci: HK1 (rs16926246/P = 3.1 x 10(-54)), MTNR1B (rs1387153/P = 4.0 X 10(-11)), GCK (rs1799884/P = 1.5 x 10(-20)) and G6PC2/ABCB11 (rs552976/P = 8.2 x 10(-18)). We show that associations with HbA(1c) are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (%HbA(1c)) difference between the extreme 10% tails of the risk score, and would reclassify similar to 2% of a general white population screened for diabetes with HbA(1c).CONCLUSIONS-GWAS identified 10 genetic loci reproducibly associated with HbA(1c). Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA(1c) levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA(1c) Diabetes 59: 3229-3239, 201

    Meta-GWAS Reveals Novel Genetic Variants Associated with Urinary Excretion of Uromodulin

    Get PDF
    Background Uromodulin, the most abundant protein excreted in normal urine, plays major roles in kidney physiology and disease. The mechanisms regulating the urinary excretion of uromodulin remain essentially unknown. Methods We conducted a meta-analysis of genome-wide association studies for raw (uUMOD) and indexed to creatinine (uUCR) urinary levels of uromodulin in 29,315 individuals of European ancestry from 13 cohorts. We tested the distribution of candidate genes in kidney segments and investigated the effects of keratin-40 (KRT40) on uromodulin processing. Results Two genome-wide significant signals were identified for uUMOD: a novel locus (P 1.24E-08) over the KRT40 gene coding for KRT40, a type 1 keratin expressed in the kidney, and the UMOD-PDILT locus (P 2.17E-88), with two independent sets of single nucleotide polymorphisms spread over UMOD and PDILT. Two genome-wide significant signals for uUCR were identified at the UMOD-PDILT locus and at the novel WDR72 locus previously associated with kidney function. The effect sizes for rs8067385, the index single nucleotide polymorphism in the KRT40 locus, were similar for both uUMOD and uUCR. KRT40 colocalized with uromodulin and modulating its expression in thick ascending limb (TAL) cells affected uromodulin processing and excretion. Conclusions Common variants in KRT40,WDR72, UMOD, and PDILT associate with the levels of uromodulin in urine. The expression of KRT40 affects uromodulin processing in TAL cells. These results, although limited by lack of replication, provide insights into the biology of uromodulin, the role of keratins in the kidney, and the influence of the UMOD-PDILT locus on kidney function

    Identification of a Polycystin-1 Cleavage Product, P100, That Regulates Store Operated Ca2+ Entry through Interactions with STIM1

    Get PDF
    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder resulting in large kidney cysts and eventual kidney failure. Mutations in either the PKD1 or PKD2/TRPP2 genes and their respective protein products, polycystin-1 (PC1) and polycystin-2 (PC2) result in ADPKD. PC2 is known to function as a non-selective cation channel, but PC1's function and the function of PC1 cleavage products are not well understood. Here we identify an endogenous PC1 cleavage product, P100, a 100 kDa fragment found in both wild type and epitope tagged PKD1 knock-in mice. Expression of full length human PC1 (FL PC1) and the resulting P100 and C-Terminal Fragment (CTF) cleavage products in both MDCK and CHO cells significantly reduces the store operated Ca2+ entry (SOCE) resulting from thapsigargin induced store depletion. Exploration into the roles of P100 and CTF in SOCE inhibition reveal that P100, when expressed in Xenopus laevis oocytes, directly inhibits the SOCE currents but CTF does not, nor does P100 when containing the disease causing R4227X mutation. Interestingly, we also found that in PC1 expressing MDCK cells, translocation of the ER Ca2+ sensor protein STIM1 to the cell periphery was significantly altered. In addition, P100 Co-immunoprecipitates with STIM1 but CTF does not. The expression of P100 in CHO cells recapitulates the STIM1 translocation inhibition seen with FL PC1. These data describe a novel polycystin-1 cleavage product, P100, which functions to reduce SOCE via direct inhibition of STIM1 translocation; a function with consequences for ADPKD
    corecore