65 research outputs found

    Somatic neurofibromatosis type 1 (NF1) inactivation events in cutaneous neurofibromas of a single NF1 patient

    Get PDF
    Neurofibromatosis type 1 (NF1) (MIM#162200) is a relatively frequent genetic condition that predisposes to tumor formation. The main types of tumors occurring in NF1 patients are cutaneous and subcutaneous neurofibromas, plexiform neurofibromas, optic pathway gliomas, and malignant peripheral nerve sheath tumors. To search for somatic mutations in cutaneous (dermal) neurofibromas, whole-exome sequencing (WES) was performed on seven spatially separated tumors and two reference tissues (blood and unaffected skin) from a single NF1 patient. Validation of WES findings was done using routine Sanger sequencing or Sequenom IPlex SNP genotyping. Exome sequencing confirmed the existence of a known familial splice-site mutation NM_000267.3:c.3113+1G>A in exon 23 of NF1 gene (HGMD ID CS951480) in blood, unaffected skin, and all tumor samples. In five out of seven analyzed tumors, we additionally detected second-hit mutations in the NF1 gene. Four of them were novel and one was previously observed. Each mutation was distinct, demonstrating the independent origin of each tumor. Only in two of seven tumors we detected an additional somatic mutation that was not associated with NF1. Our study demonstrated that somatic mutations of NF1 are likely the main drivers of cutaneous tumor formation. The study provides evidence for the rareness of single base pair level alterations in the exomes of benign NF1 cutaneous tumors.European Journal of Human Genetics advance online publication, 8 October 2014; doi:10.1038/ejhg.2014.210

    Statins, bone, and neurofibromatosis type 1

    Get PDF
    Neurofibromatosis type 1 (NF1) is a dominantly inherited multi-system disorder. Major features include pigmentary abnormalities, benign tumors of the nerve sheath (neurofibromas), malignant tumors, learning disabilities, and skeletal dysplasia. The NF1 gene functions as a tumor suppressor, but haploinsuffiency probably accounts for some aspects of the non-tumor phenotype. The protein product, neurofibromin, is a Ras GTPase-activating protein, and various Ras pathway inhibitors are being tested in preclinical models and clinical trials for effectiveness in treating NF1 complications. This month in BMC Medicine, a paper by Kolanczyk et al describes a preclinical mouse model for tibial dysplasia and provides evidence that the drug lovastatin – in use to treat cardiovascular disease – may be beneficial, opening the door to clinical trials in humans

    Modelling neurofibromatosis type 1 tibial dysplasia and its treatment with lovastatin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bowing and/or pseudarthrosis of the tibia is a known severe complication of neurofibromatosis type 1 (NF1). Mice with conditionally inactivated neurofibromin (Nf1) in the developing limbs and cranium (Nf1Prx1) show bowing of the tibia caused by decreased bone mineralisation and increased bone vascularisation. However, in contrast to NF1 patients, spontaneous fractures do not occur in Nf1Prx1 mice probably due to the relatively low mechanical load. We studied bone healing in a cortical bone injury model in Nf1Prx1 mice as a model for NF1-associated bone disease. Taking advantage of this experimental model we explore effects of systemically applied lovastatin, a cholesterol-lowering drug, on the Nf1 deficient bone repair.</p> <p>Methods</p> <p>Cortical injury was induced bilaterally in the <it>tuberositas tibiae </it>in Nf1Prx1 mutant mice and littermate controls according to a method described previously. Paraffin as well as methacrylate sections were analysed from each animal. We divided 24 sex-matched mutant mice into a lovastatin-treated and an untreated group. The lovastatin-treated mice received 0.15 mg activated lovastatin by daily gavage. The bone repair process was analysed at three consecutive time points post injury, using histological methods, micro computed tomography measurements and <it>in situ </it>hybridisation. At each experimental time point, three lovastatin-treated mutant mice, three untreated mutant mice and three untreated control mice were analysed. The animal group humanely killed on day 14 post injury was expanded to six treated and six untreated mutant mice as well as six control mice.</p> <p>Results</p> <p>Bone injury repair is a complex process, which requires the concerted effort of numerous cell types. It is initiated by an inflammatory response, which stimulates fibroblasts from the surrounding connective tissue to proliferate and fill in the injury site with a provisional extracellular matrix. In parallel, mesenchymal progenitor cells from the periost are recruited into the injury site to become osteoblasts. In Nf1Prx1 mice bone repair is delayed and characterised by the excessive formation and the persistence of fibro-cartilaginous tissue and impaired extracellular matrix mineralisation. Correspondingly, expression of Runx2 is downregulated. High-dose systemic lovastatin treatment restores Runx2 expression and accelerates new bone formation, thus improving cortical bone repair in Nf1Prx1 tibia. The bone anabolic effects correlate with a reduction of the mitogen activated protein kinase pathway hyper-activation in Nf1-deficient cells.</p> <p>Conclusion</p> <p>Our data suggest the potential usefulness of lovastatin, a drug approved by the US Food and Drug Administration in 1987 for the treatment of hypercholesteraemia, in the treatment of Nf1-related fracture healing abnormalities. The experimental model presented here constitutes a valuable tool for the pre-clinical stage testing of candidate drugs, targeting Nf1-associated bone dysplasia.</p

    Impaired proteoglycan glycosylation, elevated TGF-β signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica

    Get PDF
    <div><p>Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. <i>GORAB</i>, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the <i>Gorab</i><sup><i>Null</i></sup> full knockout, <i>Gorab</i> was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only <i>Gorab</i><sup>Prx1</sup> and <i>Gorab</i><sup>Runx2</sup> mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of <i>Gorab</i><sup><i>Null</i></sup> mutants and in bone of <i>Gorab</i><sup>Prx1</sup> mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from <i>Gorab</i><sup><i>Null</i></sup> mutants. In bone from <i>Gorab</i><sup>Prx1</sup> mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured <i>GORAB</i>-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-β in <i>Gorab</i><sup>Prx1</sup> bone tissue leading to enhanced downstream signalling, which was reproduced in <i>GORAB</i>-deficient fibroblasts. Our data suggest that the loss of <i>Gorab</i> primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment.</p></div

    C7orf30 specifically associates with the large subunit of the mitochondrial ribosome and is involved in translation

    Get PDF
    In a comparative genomics study for mitochondrial ribosome-associated proteins, we identified C7orf30, the human homolog of the plant protein iojap. Gene order conservation among bacteria and the observation that iojap orthologs cannot be transferred between bacterial species predict this protein to be associated with the mitochondrial ribosome. Here, we show colocalization of C7orf30 with the large subunit of the mitochondrial ribosome using isokinetic sucrose gradient and 2D Blue Native polyacrylamide gel electrophoresis (BN-PAGE) analysis. We co-purified C7orf30 with proteins of the large subunit, and not with proteins of the small subunit, supporting interaction that is specific to the large mitoribosomal complex. Consistent with this physical association, a mitochondrial translation assay reveals negative effects of C7orf30 siRNA knock-down on mitochondrial gene expression. Based on our data we propose that C7orf30 is involved in ribosomal large subunit function. Sequencing the gene in 35 patients with impaired mitochondrial translation did not reveal disease-causing mutations in C7orf30

    The Haploinsufficient Hematopoietic Microenvironment Is Critical to the Pathological Fracture Repair in Murine Models of Neurofibromatosis Type 1

    Get PDF
    Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a complex genetic disorder with a high predisposition of numerous skeletal dysplasias including short stature, osteoporosis, kyphoscoliosis, and fracture non-union (pseudoarthrosis). We have developed murine models that phenocopy many of the skeletal dysplasias observed in NF1 patients, including reduced bone mass and fracture non-union. We also show that the development of these skeletal manifestations requires an Nf1 haploinsufficient background in addition to nullizygous loss of Nf1 in mesenchymal stem/progenitor cells (MSCs) and/or their progenies. This is replicated in two animal models of NF1, PeriCre+;Nf1flox/− and Col2.3Cre+;Nf1flox/−mice. Adoptive transfer experiments demonstrate a critical role of the Nf1+/− marrow microenvironment in the impaired fracture healing in both models and adoptive transfer of WT bone marrow cells improves fracture healing in these mice. To our knowledge, this is the first demonstration of a non-cell autonomous mechanism in non-malignant NF1 manifestations. Collectively, these data provide evidence of a combinatory effect between nullizygous loss of Nf1 in osteoblast progenitors and haploinsufficiency in hematopoietic cells in the development of non-malignant NF1 manifestations

    Mutation p.R356Q in the Collybistin Phosphoinositide Binding Site Is Associated With Mild Intellectual Disability

    Get PDF
    The recruitment of inhibitory GABAA receptors to neuronal synapses requires a complex interplay between receptors, neuroligins, the scaffolding protein gephyrin and the GDP-GTP exchange factor collybistin (CB). Collybistin is regulated by protein-protein interactions at the N-terminal SH3 domain, which can bind neuroligins 2/4 and the GABAAR a2 subunit. Collybistin also harbors a RhoGEF domain which mediates interactions with gephyrin and catalyzes GDP-GTP exchange on Cdc42. Lastly, collybistin has a pleckstrin homology (PH) domain, which binds phosphoinositides, such as phosphatidylinositol 3-phosphate (PI3P/PtdIns3P) and phosphatidylinositol 4-monophosphate (PI4P/PtdIns4P). PI3P located in early/sorting endosomes has recently been shown to regulate the postsynaptic clustering of gephyrin and GABAA receptors and consequently the strength of inhibitory synapses in cultured hippocampal neurons. This process is disrupted by mutations in the collybistin gene (ARHGEF9), which cause X-linked intellectual disability (XLID) by a variety of mechanisms converging on disrupted gephyrin and GABAA receptor clustering at central synapses. Here we report a novel missense mutation (chrX:62875607C>T, p.R356Q) in ARHGEF9 that affects one of the two paired arginine residues in the PH domain that were predicted to be vital for binding phosphoinositides. Functional assays revealed that recombinant collybistin CB3SH3-R356Q was deficient in PI3P binding and was not able to translocate EGFP-gephyrin to submembrane microaggregates in an in vitro clustering assay. Expression of the PI3P-binding mutants CB3SH3-R356Q and CB3SH3-R356N/R357N in cultured hippocampal neurones revealed that the mutant proteins did not accumulate at inhibitory synapses, but instead resulted in a clear decrease in the overall number of synaptic gephyrin clusters compared to controls. Molecular dynamics simulations suggest that the p.R356Q substitution influences PI3P binding by altering the range of structural conformations adopted by collybistin. Taken together, these results suggest that the p.R356Q mutation in ARHGEF9 is the underlying cause of XLID in the probands, disrupting gephyrin clustering at inhibitory GABAergic synapses via loss of collybistin PH domain phosphoinositide binding

    Neurofibromatosis: chronological history and current issues

    Full text link
    • …
    corecore