12 research outputs found

    Fused eco29kIR- and M genes coding for a fully functional hybrid polypeptide as a model of molecular evolution of restriction-modification systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery of restriction endonucleases and modification DNA methyltransferases, key instruments of genetic engineering, opened a new era of molecular biology through development of the recombinant DNA technology. Today, the number of potential proteins assigned to type II restriction enzymes alone is beyond 6000, which probably reflects the high diversity of evolutionary pathways. Here we present experimental evidence that a new type IIC restriction and modification enzymes carrying both activities in a single polypeptide could result from fusion of the appropriate genes from preexisting bipartite restriction-modification systems.</p> <p>Results</p> <p>Fusion of <it>eco29kIR </it>and <it>M </it>ORFs gave a novel gene encoding for a fully functional hybrid polypeptide that carried both restriction endonuclease and DNA methyltransferase activities. It has been placed into a subclass of type II restriction and modification enzymes - type IIC. Its MTase activity, 80% that of the M.Eco29kI enzyme, remained almost unchanged, while its REase activity decreased by three times, concurrently with changed reaction optima, which presumably can be caused by increased steric hindrance in interaction with the substrate. <it>In vitro </it>the enzyme preferentially cuts DNA, with only a low level of DNA modification detected. <it>In vivo </it>new RMS can provide a 10<sup>2</sup>-fold less protection of host cells against phage invasion.</p> <p>Conclusions</p> <p>We propose a molecular mechanism of appearing of type IIC restriction-modification and M.SsoII-related enzymes, as well as other multifunctional proteins. As shown, gene fusion could play an important role in evolution of restriction-modification systems and be responsible for the enzyme subclass interconversion. Based on the proposed approach, hundreds of new type IIC enzymes can be generated using head-to-tail oriented type I, II, and III restriction and modification genes. These bifunctional polypeptides can serve a basis for enzymes with altered recognition specificities. Lastly, this study demonstrates that protein fusion may change biochemical properties of the involved enzymes, thus giving a starting point for their further evolutionary divergence.</p

    Creation of a type IIS restriction endonuclease with a long recognition sequence

    Get PDF
    Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases

    TstI, a Type II restriction–modification protein with DNA recognition, cleavage and methylation functions in a single polypeptide

    No full text
    Type II restriction–modification systems cleave and methylate DNA at specific sequences. However, the Type IIB systems look more like Type I than conven-tional Type II schemes as they employ the same pro-tein for both restriction and modification and for DNA recognition. Several Type IIB proteins, including the archetype BcgI, are assemblies of two polypeptides: one with endonuclease and methyltransferase roles, another for DNA recognition. Conversely, some IIB proteins express all three functions from separate segments of a single polypeptide. This study anal-ysed one such single-chain protein, TstI. Compar-ison with BcgI showed that the one- and the two-polypeptide systems differ markedly. Unlike the het-erologous assembly of BcgI, TstI forms a homote-tramer. The tetramer bridges two recognition sites before eventually cutting the DNA in both strands on both sides of the sites, but at each site the first double-strand break is made long before the second. In contrast, BcgI cuts all eight target bonds at two sites in a single step. TstI also differs from BcgI in either methylating or cleaving unmodified sites at similar rates. The site may thus be modified before TstI can make the second double-strand break. TstI MTase acts best at hemi-methylated sites
    corecore