1,373 research outputs found
The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions
A comprehensive monitoring system for the thermal environment inside the
Borexino neutrino detector was developed and installed in order to reduce
uncertainties in determining temperatures throughout the detector. A
complementary thermal management system limits undesirable thermal couplings
between the environment and Borexino's active sections. This strategy is
bringing improved radioactive background conditions to the region of interest
for the physics signal thanks to reduced fluid mixing induced in the liquid
scintillator. Although fluid-dynamical equilibrium has not yet been fully
reached, and thermal fine-tuning is possible, the system has proven extremely
effective at stabilizing the detector's thermal conditions while offering
precise insights into its mechanisms of internal thermal transport.
Furthermore, a Computational Fluid-Dynamics analysis has been performed, based
on the empirical measurements provided by the thermal monitoring system, and
providing information into present and future thermal trends. A two-dimensional
modeling approach was implemented in order to achieve a proper understanding of
the thermal and fluid-dynamics in Borexino. It was optimized for different
regions and periods of interest, focusing on the most critical effects that
were identified as influencing background concentrations. Literature
experimental case studies were reproduced to benchmark the method and settings,
and a Borexino-specific benchmark was implemented in order to validate the
modeling approach for thermal transport. Finally, fully-convective models were
applied to understand general and specific fluid motions impacting the
detector's Active Volume.Comment: arXiv admin note: substantial text overlap with arXiv:1705.09078,
arXiv:1705.0965
Le nouveau cirque américain
On peut dire que depuis ses débuts, vers les 1870, le cirque américain a connu des périodes où il aspirait au grand art et où il empruntait au théâtre des artistes, des techniques et la dramaturgie. Ce n’est qu’en 1975, lorsque des artistes ont abandonné l’idéal américain de la grandeur pour adopter le modèle européen de la piste simple que ce mouvement a connu son véritable essor. Le Big Apple Circus, le Pickle Family Circus, le Cirque du Soleil et Circus Flora ont réussi à théâtralisé le cirque américain. Même le géant du cirque à trois pistes, le Ringling Bros. and Barnum & Bailey, a commencé à donner à ses spectacles une allure plus théâtrale. Le Midnight Circus, Circus Sarasota ainsi que Barnum’s Kaleidoscape, entre autres, ont continué à trouver de nouvelles façons d’allier le cirque et le théâtre. Des écoles de cirque ont été fondées afin de fournir aux nouveaux cirques des artistes formés aux nouvelles techniques. Tous visent à faire évoluer le cirque vers la forme d’art à laquelle il a toujours aspiré.Almost from its very beginning, in the 1870's, the American circus has gone through periods when it aspired to high art and borrowed artists, techniques and dramaturgy from the theatre. It was not until 1975, when certain artists abandoned the all-American ideal that bigger was always better and opted, instead, to model their new circuses after the European model of the one ring circus, that this movement began to gain momentum. The Big Apple Circus, The Pickle Family Circus, Cirque du Soleil, and Circus Flora were leaders in the movement to theatricalize the American circus. Eventually even the three-ring giant, Ringling Bros. and Barnum & Bailey, began to refashion its performance in a more theatrical manner. These early circuses were followed by the Midnight Circus, Circus Sarasota and Barnum's Kaleidoscape, among others, which continued to find new ways of melding circus and theatre. To provide performing artists for these new circuses, new circus schools had to be founded to train the artists in the new style and technique demanded by the new circuses. Together the artists and the various circuses are seeking to have the circus evolve into the unique art form it has always hoped to be
A Study of the Residual 39Ar Content in Argon from Underground Sources
The discovery of argon from underground sources with significantly less 39Ar
than atmospheric argon was an important step in the development of
direct-detection dark matter experiments using argon as the active target. We
report on the design and operation of a low background detector with a single
phase liquid argon target that was built to study the 39Ar content of the
underground argon. Underground argon from the Kinder Morgan CO2 plant in
Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in
atmospheric argon.Comment: 21 pages, 10 figure
The Main Results of the Borexino Experiment
The main physical results on the registration of solar neutrinos and the
search for rare processes obtained by the Borexino collaboration to date are
presented.Comment: 8 pages, 8 figgures, To be published as Proceedings of the Third
Annual Large Hadron Collider Physics Conference, St. Petersburg, Russia, 201
The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment
Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7
neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by
their elastic scattering on electrons in 100 tons of liquid scintillator. The
neutrino event rate in the scintillator is expected to be low (~0.35 events per
day per ton), and the signals will be at energies below 1.5 MeV, where
background from natural radioactivity is prominent. Scintillation light
produced by the recoil electrons is observed by an array of 2240
photomultiplier tubes. Because of the intrinsic radioactive contaminants in
these PMTs, the liquid scintillator is shielded from them by a thick barrier of
buffer fluid. A spherical vessel made of thin nylon film contains the
scintillator, separating it from the surrounding buffer. The buffer region
itself is divided into two concentric shells by a second nylon vessel in order
to prevent inward diffusion of radon atoms. The radioactive background
requirements for Borexino are challenging to meet, especially for the
scintillator and these nylon vessels. Besides meeting requirements for low
radioactivity, the nylon vessels must also satisfy requirements for mechanical,
optical, and chemical properties. The present paper describes the research and
development, construction, and installation of the nylon vessels for the
Borexino experiment
Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun
The Sun is fueled by a series of nuclear reactions that produce the energy
that makes it shine. The primary reaction is the fusion of two protons into a
deuteron, a positron and a neutrino. These neutrinos constitute the vast
majority of neutrinos reaching Earth, providing us with key information about
what goes on at the core of our star. Several experiments have now confirmed
the observation of neutrino oscillations by detecting neutrinos from secondary
nuclear processes in the Sun; this is the first direct spectral measurement of
the neutrinos from the keystone proton-proton fusion. This observation is a
crucial step towards the completion of the spectroscopy of pp-chain neutrinos,
as well as further validation of the LMA-MSW model of neutrino oscillations.Comment: Proceedings from NOW (Neutrino Oscillation Workshop) 201
Recommended from our members
New limits on heavy sterile neutrino mixing in -decay obtained with the Borexino detector
If heavy neutrinos with mass 2 are produced in the
Sun via the decay in a side
branch of pp-chain, they would undergo the observable decay into an electron, a
positron and a light neutrino . In the
present work Borexino data are used to set a bound on the existence of such
decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV 14 MeV to be
respectively. These are tighter limits on the mixing parameters than obtained
in previous experiments at nuclear reactors and accelerators.Comment: 7 pages, 6 figure
Muon and Cosmogenic Neutron Detection in Borexino
Borexino, a liquid scintillator detector at LNGS, is designed for the
detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear
reactors, and the Earth. The feeble nature of these signals requires a strong
suppression of backgrounds below a few MeV. Very low intrinsic radiogenic
contamination of all detector components needs to be accompanied by the
efficient identification of muons and of muon-induced backgrounds. Muons
produce unstable nuclei by spallation processes along their trajectory through
the detector whose decays can mimic the expected signals; for isotopes with
half-lives longer than a few seconds, the dead time induced by a muon-related
veto becomes unacceptably long, unless its application can be restricted to a
sub-volume along the muon track. Consequently, not only the identification of
muons with very high efficiency but also a precise reconstruction of their
tracks is of primary importance for the physics program of the experiment. The
Borexino inner detector is surrounded by an outer water-Cherenkov detector that
plays a fundamental role in accomplishing this task. The detector design
principles and their implementation are described. The strategies adopted to
identify muons are reviewed and their efficiency is evaluated. The overall muon
veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction
algorithms developed are presented. Their performance is tested against muon
events of known direction such as those from the CNGS neutrino beam, test
tracks available from a dedicated External Muon Tracker and cosmic muons whose
angular distribution reflects the local overburden profile. The achieved
angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending
on the impact parameter of the crossing muon. The methods implemented to
efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file
(defines.tex) with TEX macros. submitted to Journal of Instrumentatio
Recommended from our members
New experimental limits on the Pauli forbidden transitions in C nuclei obtained with 485 days Borexino data
The Pauli exclusion principle (PEP) has been tested for nucleons () in
with the Borexino detector.The approach consists of a search for
, , and emitted in a non-Paulian transition of
1- shell nucleons to the filled 1 shell in nuclei. Due to the
extremely low background and the large mass (278 t) of the Borexino detector,
the following most stringent up-to-date experimental bounds on PEP violating
transitions of nucleons have been established:
y, y,
y,
y and y, all at 90% C.L. The corresponding upper
limits on the relative strengths for the searched non-Paulian electromagnetic,
strong and weak transitions have been estimated: , and .Comment: 9 pages, 6 figure
- …
