Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7
neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by
their elastic scattering on electrons in 100 tons of liquid scintillator. The
neutrino event rate in the scintillator is expected to be low (~0.35 events per
day per ton), and the signals will be at energies below 1.5 MeV, where
background from natural radioactivity is prominent. Scintillation light
produced by the recoil electrons is observed by an array of 2240
photomultiplier tubes. Because of the intrinsic radioactive contaminants in
these PMTs, the liquid scintillator is shielded from them by a thick barrier of
buffer fluid. A spherical vessel made of thin nylon film contains the
scintillator, separating it from the surrounding buffer. The buffer region
itself is divided into two concentric shells by a second nylon vessel in order
to prevent inward diffusion of radon atoms. The radioactive background
requirements for Borexino are challenging to meet, especially for the
scintillator and these nylon vessels. Besides meeting requirements for low
radioactivity, the nylon vessels must also satisfy requirements for mechanical,
optical, and chemical properties. The present paper describes the research and
development, construction, and installation of the nylon vessels for the
Borexino experiment