195 research outputs found

    Performance and carcass characteristics of steers fed with two levels of metabolizable energy intake during summer and winter season

    Get PDF
    Climate change is producing an increase on extreme weather events around the world such as flooding, drought and extreme ambient temperatures impacting animal production and animal welfare. At present, there is a lack of studies addressing the effects of climatic conditions associated with energy intake in finishing cattle in South American feed yards. Therefore, two experiments were conducted to assess the effects of environmental variables and level of metabolizable energy intake above maintenance requirements (MEI) on performance and carcass quality of steers. In each experiment (winter and summer), steers were fed with 1.85 or 2.72 times of their requirements of metabolizable energy of maintenance. A total of 24 crossbred steers per experiment were used and located in four pens (26.25 m2/head) equipped with a Calan Broadbent Feeding System. Animals were fed with the same diet within each season, varying the amount offered to adjust the MEI treatments. Mud depth, mud scores, tympanic temperature (TT), environmental variables, average daily gain, respiration rates and carcass characteristics plus three thermal comfort indices were collected. Data analysis considered a factorial arrangement (Season and MEI). In addition, a repeated measures analysis was performed for TT and respiration rate. Mean values of ambient temperature, solar radiation and comfort thermal indices were greater in the summer experiment as expected (P\u3c 0.005). The mean values of TT were higher in steers fed with higher MEI and also in the summer season. The average daily gain was greater during summer v. winter (1.10 ± 0.11 v. 0.36 ± 0.06) kg/day, also when steers were fed 2.72 v. 1.85 MEI level (0.89 ± 0.12 v. 0.57 ± 0.10) kg/day. In summer, respiration rate increased in 41.2% in the afternoon. In winter, muddy conditions increased with time of feeding, whereas wind speed and rainfall had significant effects on TT and average daily gain. We conclude that MEI and environmental variables have direct effects on the physiology and performance of steers, including TT and average daily gain, particularly during the winter. In addition, carcass characteristics were affected by season but not by the level of MEI. Finally, due to the high variability of data as well as the small number of animals assessed in these experiments, more studies on carcass characteristics under similar conditions are required

    Performance and carcass characteristics of steers fed with two levels of metabolizable energy intake during summer and winter season

    Get PDF
    Climate change is producing an increase on extreme weather events around the world such as flooding, drought and extreme ambient temperatures impacting animal production and animal welfare. At present, there is a lack of studies addressing the effects of climatic conditions associated with energy intake in finishing cattle in South American feed yards. Therefore, two experiments were conducted to assess the effects of environmental variables and level of metabolizable energy intake above maintenance requirements (MEI) on performance and carcass quality of steers. In each experiment (winter and summer), steers were fed with 1.85 or 2.72 times of their requirements of metabolizable energy of maintenance. A total of 24 crossbred steers per experiment were used and located in four pens (26.25 m2/head) equipped with a Calan Broadbent Feeding System. Animals were fed with the same diet within each season, varying the amount offered to adjust the MEI treatments. Mud depth, mud scores, tympanic temperature (TT), environmental variables, average daily gain, respiration rates and carcass characteristics plus three thermal comfort indices were collected. Data analysis considered a factorial arrangement (Season and MEI). In addition, a repeated measures analysis was performed for TT and respiration rate. Mean values of ambient temperature, solar radiation and comfort thermal indices were greater in the summer experiment as expected (P<0.005). The mean values of TT were higher in steers fed with higher MEI and also in the summer season. The average daily gain was greater during summer v. winter (1.10±0.11 v. 0.36±0.06) kg/day, also when steers were fed 2.72 v. 1.85 MEI level (0.89±0.12 v. 0.57±0.10) kg/day. In summer, respiration rate increased in 41.2% in the afternoon. In winter, muddy conditions increased with time of feeding, whereas wind speed and rainfall had significant effects on TT and average daily gain. We conclude that MEI and environmental variables have direct effects on the physiology and performance of steers, including TT and average daily gain, particularly during the winter. In addition, carcass characteristics were affected by season but not by the level of MEI. Finally, due to the high variability of data as well as the small number of animals assessed in these experiments, more studies on carcass characteristics under similar conditions are required

    Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized

    Get PDF
    Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades, knowledge based potentials based on pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been center stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state -- a necessary component of these potentials -- is an unsolved problem. PMFs are loosely justified by analogy to the reversible work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over different features of proteins need to be combined. We call these quantities reference ratio distributions deriving from the application of the reference ratio method. This new view is not only of theoretical relevance, but leads to many insights that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions derived from known biomolecular structures

    Knowledge-based energy functions for computational studies of proteins

    Full text link
    This chapter discusses theoretical framework and methods for developing knowledge-based potential functions essential for protein structure prediction, protein-protein interaction, and protein sequence design. We discuss in some details about the Miyazawa-Jernigan contact statistical potential, distance-dependent statistical potentials, as well as geometric statistical potentials. We also describe a geometric model for developing both linear and non-linear potential functions by optimization. Applications of knowledge-based potential functions in protein-decoy discrimination, in protein-protein interactions, and in protein design are then described. Several issues of knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    Early prevention of diabetes microvascular complications in people with hyperglycaemia in Europe. ePREDICE randomized trial. Study protocol, recruitment and selected baseline data

    Get PDF
    Objectives To assess the effects of early management of hyperglycaemia with antidiabetic drugs plus lifestyle intervention compared with lifestyle alone, on microvascular function in adults with pre-diabetes. Methods Trial design: International, multicenter, randomised, partially double-blind, placebo-controlled, clinical trial. Participants Males and females aged 45-74 years with IFG, IGT or IFG+IGT, recruited from primary care centres in Australia, Austria, Bulgaria, Greece, Kuwait, Poland, Serbia, Spain and Turkey. Intervention Participants were randomized to placebo; metformin 1.700 mg/day; linagliptin 5 mg/day or fixed-dose combination of linagliptin/metformin. All patients were enrolled in a lifestyle intervention program (diet and physical activity). Drug intervention will last 2 years. Primary Outcome: Composite end-point of diabetic retinopathy estimated by the Early Treatment Diabetic Retinopathy Study Score, urinary albumin to creatinine ratio, and skin conductance in feet estimated by the sudomotor index. Secondary outcomes in a subsample include insulin sensitivity, beta-cell function, biomarkers of inflammation and fatty liver disease, quality of life, cognitive function, depressive symptoms and endothelial function. Results One thousand three hundred ninety one individuals with hyperglycaemia were assessed for eligibility, 424 excluded after screening, 967 allocated to placebo, metformin, linagliptin or to fixed-dose combination of metformin + linagliptin. A total of 809 people (91.1%) accepted and initiated the assigned treatment. Study sample after randomization was well balanced among the four groups. No statistical differences for the main risk factors analysed were observed between those accepting or rejecting treatment initiation. At baseline prevalence of diabetic retinopathy was 4.2%, severe neuropathy 5.3% and nephropathy 5.7%. Conclusions ePREDICE is the first -randomized clinical trial with the aim to assess effects of different interventions (lifestyle and pharmacological) on microvascular function in people with prediabetes. The trial will provide novel data on lifestyle modification combined with glucose lowering drugs for the prevention of early microvascular complications and diabetes

    Decision-making of English Netball Superleague umpires: Contextual and dispositional influences

    Get PDF
    Objectives. The decisions made by officials have a direct bearing on the outcomes of competitive sport contests. In an exploratory study, we examine the interrelationships between the decisions made by elite netball umpires, the potential contextual and environmental influences (e.g., crowd size), and the umpires’ dispositional tendencies – specifically, their propensity to deliberate and ruminate on their decisions. Design/Method. Filmed footage from 60 England Netball Superleague matches was coded using performance analysis software. We measured the number of decisions made overall, and for home and away teams; league position; competition round; match quarter; and crowd size. Additionally, 10 umpires who officiated in the matches completed the Decision-Specific Reinvestment Scale (DSRS). Results. Regression analyses predicted that as home teams’ league position improved the number of decisions against away teams increased. A model comprising competition round and average league position of both teams predicted the number of decisions made in matches, but neither variable emerged as a significant predictor. The umpire analyses revealed that greater crowd size was associated with an increase in decisions against away teams. The Decision Rumination factor was strongly negatively related to the number of decisions in Quarters 1 and 3, this relationship was driven by fewer decisions against home teams by umpires who exhibited higher Rumination subscale scores. Conclusions. These findings strengthen our understanding of contextual, environmental, and dispositional influences on umpires’ decision-making behaviour. The tendency to ruminate upon decisions may explain the changes in decision behaviour in relation to the home team advantage effect

    Limpet Shells from the Aterian Level 8 of El Harhoura 2 Cave (Témara, Morocco): Preservation State of Crossed-Foliated Layers

    Get PDF
    International audienceThe exploitation of mollusks by the first anatomically modern humans is a central question for archaeologists. This paper focuses on level 8 (dated around * 100 ka BP) of El Har-houra 2 Cave, located along the coastline in the Rabat-Témara region (Morocco). The large quantity of Patella sp. shells found in this level highlights questions regarding their origin and preservation. This study presents an estimation of the preservation status of these shells. We focus here on the diagenetic evolution of both the microstructural patterns and organic components of crossed-foliated shell layers, in order to assess the viability of further investigations based on shell layer minor elements, isotopic or biochemical compositions. The results show that the shells seem to be well conserved, with microstructural patterns preserved down to sub-micrometric scales, and that some organic components are still present in situ. But faint taphonomic degradations affecting both mineral and organic components are nonetheless evidenced, such as the disappearance of organic envelopes surrounding crossed-foliated lamellae, combined with a partial recrystallization of the lamellae. Our results provide a solid case-study of the early stages of the diagenetic evolution of crossed-foliated shell layers. Moreover, they highlight the fact that extreme caution must be taken before using fossil shells for palaeoenvironmental or geochronological reconstructions. Without thorough investigation, the alteration patterns illustrated here would easily have gone unnoticed. However, these degradations are liable to bias any proxy based on the elemental, isotopic or biochemical composition of the shells. This study also provides significant data concerning human subsistence behavior: the presence of notches and the good preservation state of limpet shells (no dissolution/recrystallization, no bioerosion and no abrasion/fragmentation aspects) would attest that limpets were gathered alive with tools by Middle Palaeolithic (Aterian) populations in North Africa for consumption
    • …
    corecore