1,333 research outputs found

    A simple method to assess the oxidative susceptibility of low density lipoproteins

    Get PDF
    BACKGROUND: Oxidative modification of low density lipoproteins (LDL) is recognized as one of the major processes involved in atherogenesis. The in vitro standardized measurement of LDL oxidative susceptibility could thus be of clinical significance. The aim of the present study was to establish a method which would allow the evaluation of oxidative susceptibility of LDL in the general clinical laboratory. RESULTS: LDL was isolated from human plasma by selective precipitation with amphipathic polymers. The ability of LDL to form peroxides was assessed by measuring thiobarbituric acid reactive substances (TBARS) after incubation with Cu(2+) and H(2)O(2). Reaction kinetics showed a three-phase pattern (latency, propagation and decomposition phases) which allowed us to select 150 min as the time point to stop the incubation by cooling and EDTA addition. The mixture Cu(2+)/H(2)O(2) yielded more lipoperoxides than each one on its own at the same time end-point. Induced peroxidation was measured in normal subjects and in type 2 diabetic patients. In the control group, results were 21.7 ± 1.5 nmol MDA/mg LDL protein, while in the diabetic group results were significantly increased (39.0 ± 3.0 nmol MDA/mg LDL protein; p < 0.001). CONCLUSION: a simple and useful method is presented for the routine determination of LDL susceptibility to peroxidation in a clinical laboratory

    Quality evaluation of olive oil by statistical analysis of multicomponent stable isotope dilution assay data of aroma active compounds

    Get PDF
    An instrumental method for the evaluation of olive oil quality was developed. Twenty-one relevant aroma active compounds were quantified in 95 olive oil samples of different quality by headspace solid phase microextraction (HS-SPME) and dynamic headspace coupled to GC-MS. On the basis of these stable isotope dilution assay results, statistical evaluation by partial least-squares discriminant analysis (PLS-DA) was performed. Important variables were the odor activity values of ethyl isobutanoate, ethyl 2-methylbutanoate, 3-methylbutanol, butyric acid, E,E-2,4-decadienal, hexanoic acid, guaiacol, 2-phenylethanol, and the sum of the odor activity values of Z-3-hexenal, E-2-hexenal, Z-3-hexenyl acetate, and Z-3-hexenol. Classification performed with these variables predicted 88% of the olive oils? quality correctly. Additionally, the aroma compounds, which are characteristic for some off-flavors, were dissolved in refined plant oil. Sensory evaluation of these models demonstrated that the off-flavors rancid, fusty, and vinegary could be successfully simulated by a limited number of odorants

    Insulin Reduces Cerebral Ischemia/Reperfusion Injury in the Hippocampus of Diabetic Rats: A Role for Glycogen Synthase Kinase-3β

    Get PDF
    OBJECTIVE—There is evidence that insulin reduces brain injury evoked by ischemia/reperfusion (I/R). However, the molecular mechanisms underlying the protective effects of insulin remain unknown. Insulin is a well-known inhibitor of glycogen synthase kinase-3β (GSK-3β). Here, we investigate the role of GSK-3β inhibition on I/R-induced cerebral injury in a rat model of insulinopenic diabetes

    The uncoupling protein 1 gene, UCP1, is expressed in mammalian islet cells and associated with acute insulin response to glucose in African American families from the IRAS Family Study

    Get PDF
    BACKGROUND: Variants of uncoupling protein genes UCP1 and UCP2 have been associated with a range of traits. We wished to evaluate contributions of known UCP1 and UCP2 variants to metabolic traits in the Insulin Resistance and Atherosclerosis (IRAS) Family Study. METHODS: We genotyped five promoter or coding single nucleotide polymorphisms (SNPs) in 239 African American (AA) participants and 583 Hispanic participants from San Antonio (SA) and San Luis Valley. Generalized estimating equations using a sandwich estimator of the variance and exchangeable correlation to account for familial correlation were computed for the test of genotypic association, and dominant, additive and recessive models. Tests were adjusted for age, gender and BMI (glucose homeostasis and lipid traits), or age and gender (obesity traits), and empirical P-values estimated using a gene dropping approach. RESULTS: UCP1 A-3826G was associated with AIR(g )in AA (P = 0.006) and approached significance in Hispanic families (P = 0.054); and with HDL-C levels in SA families (P = 0.0004). Although UCP1 expression is reported to be restricted to adipose tissue, RT-PCR indicated that UCP1 is expressed in human pancreas and MIN-6 cells, and immunohistochemistry demonstrated co-localization of UCP1 protein with insulin in human islets. UCP2 A55V was associated with waist circumference (P = 0.045) in AA, and BMI in SA (P = 0.018); and UCP2 G-866A with waist-to-hip ratio in AA (P = 0.016). CONCLUSION: This study suggests a functional variant of UCP1 contributes to the variance of AIR(g )in an AA population; the plausibility of this unexpected association is supported by the novel finding that UCP1 is expressed in islets

    Comparison of Yarrowia lipolytica and Pichia pastoris cellular response to different agents of oxidative stress

    Get PDF
    Yeast cells exposed to adverse conditions employ a number of defense mechanisms in order to respond effectively to the stress effects of reactive oxygen species. In this work, the cellular response of Yarrowia lipolytica and Pichia pastoris to the exposure to the ROSinducing agents’ paraquat, hydrogen peroxide, and increased air pressure was analyzed. Yeast cells at exponential phase were exposed for 3 h to 1 mM paraquat, to 50 mM H2O2, or to increased air pressure of 3 or 5 bar. For both strains, the cellular viability loss and lipid peroxidation was lower for the cells exposed to increased air pressure than for those exposed to chemical oxidants. The glutathione induction occurred only in Y. lipolytica strain and reached the highest level as a response to PQ exposure. In general, antioxidant enzymes were more expressed in Y. lipolytica than in P. pastoris. The enzyme superoxide dismutase was induced in both strains under all the oxidant conditions but was dependent on the cellular growth phase, being undetectable in non-growing cells, whereas glutathione reductase was more induced in those conditions. Hydrogen peroxide was the most efficient inducer of catalase. Both yeast cultures underwent no cellular growth inhibition with increased air pressure, indicating that these yeast species were able to adapt to the oxidative stressful environment.The authors acknowledge the financial support provided by "Fundacao para a Ciencia e Tecnologia" (Grant SFRH/BD/47371/2008)

    High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities is that the activity against commercial substrates, such as carboxymethylcellulose, does not always correspond to the activity against the natural lignocellulosic material. Besides that, the macroscopic characteristics of the raw material, such as insolubility and heterogeneity, hinder its use for high throughput screenings.</p> <p>Results</p> <p>In this paper, we present the preparation of a colloidal suspension of particles obtained from sugarcane bagasse, with minimal chemical change in the lignocellulosic material, and demonstrate its use for high throughput assays of hydrolases using Brazilian termites as the screened organisms.</p> <p>Conclusions</p> <p>Important differences between the use of the natural substrate and commercial cellulase substrates, such as carboxymethylcellulose or crystalline cellulose, were observed. This suggests that wood feeding termites, in contrast to litter feeding termites, might not be the best source for enzymes that degrade sugarcane biomass.</p
    corecore