137 research outputs found

    Characterization of polycyclic aromatic compounds in historically contaminated soil by targeted and non-targeted chemical analysis combined with in vitro bioassay

    Get PDF
    Soil samples from a contaminated site in Sweden were analyzed to identify the presence of 78 polycyclic aromatic compounds (PACs) using gas chromatography coupled with mass spectrometry (GC-MS). The target analysis revealed large contributions not only from polycyclic aromatic hydrocarbons (PAHs), but also from alkylated- and oxygenated-PAHs (alkyl- and oxy-PAHs, respectively), and N-heterocyclics (NPACs). PAC profiles indicated primarily pyrogenic sources, although contribution of petrogenic sources was also observed in one sample as indicated by a high ratio of alkylated naphthalene compared to naphthalene. The aryl hydrocarbon receptor (AhR)-activity of the soil extracts was assessed using the H4IIe-pGudluc 1.1 cells bioassay. When compared with the calculated total AhR-activity of the PACs in the target list, 35-97% of the observed bioassay activity could be explained by 62 PACs with relative potency factors (REPs). The samples were further screened using GC coupled with OrbitrapTM high resolution MS (GC-HRMS) to investigate the presence of other PACs that could potentially contribute to the AhR-activity of the extracts. 114 unique candidate compounds were tentatively identified and divided into four groups based on their AhR-activity and environmental occurrence. Twelve substances satisfied all the criteria, and these compounds are suggested to be included in regular screening in future studies, although their identities were not confirmed by standards in this study. High unexplained bio-TEQ fractions in three of the samples may be explained by tentatively identified compounds (n = 35) with high potential of being toxic. This study demonstrates the benefit of combining targeted and non-targeted chemical analysis with bioassay analysis to assess the diversity and effects of PACs at contaminated sites. The applied prioritization strategy revealed a number of tentatively identified compounds, which likely contributed to the overall bioactivity of the soil extracts

    Comparison between manual scaling and Autoscala automatic scaling applied to Sodankylä Geophysical Observatory ionograms

    Get PDF
    This paper presents a comparison between standard ionospheric parameters manually and automatically scaled from ionograms recorded at the high-latitude Sodankylä Geophysical Observatory (SGO, ionosonde SO166, 64.1° geomagnetic latitude), located in the vicinity of the auroral oval. The study is based on 2610 ionograms recorded during the period June–December 2013. The automatic scaling was made by means of the Autoscala software. A few typical examples are shown to outline the method, and statistics are presented regarding the differences between manually and automatically scaled values of F2, F1, E and sporadic E (Es) layer parameters. We draw the conclusions that: 1. The F2 parameters scaled by Autoscala, foF2 and M(3000)F2, are reliable. 2. F1 is identified by Autoscala in significantly fewer cases (about 50 %) than in the manual routine, but if identified the values of foF1 are reliable. 3. Autoscala frequently (30% of the cases) detects an E layer when the manual scaling process does not. When identified by both methods, the Autoscala E-layer parameters are close to those manually scaled, foE agreeing to within 0.4 MHz. 4. Es and parameters of Es identified by Autoscala are in many cases different from those of the manual scaling. Scaling of Es at auroral latitudes is often a difficult task

    Case study: ENVRI science demonstrators with D4Science

    Get PDF
    Whenever a community of practice starts developing an IT solution for its use case(s) it has to face the issue of carefully selecting “the platform” to use. Such a platform should match the requirements and the overall settings resulting from the specific application context (including legacy technologies and solutions to be integrated and reused, costs of adoption and operation, easiness in acquir- ing skills and competencies). There is no one-size-fits-all solution that is suitable for all application context, and this is particularly true for scientific communities and their cases because of the wide heterogeneity characterising them. However, there is a large consensus that solutions from scratch are inefficient and services that facilitate the development and maintenance of scientific community-specific solutions do exist. This chapter describes how a set of diverse communities of practice efficiently developed their science demonstrators (on analysing and pro- ducing user-defined atmosphere data products, greenhouse gases fluxes, particle formation, mosquito diseases) by leveraging the services offered by the D4Science infrastructure. It shows that the D4Science design decisions aiming at streamlin- ing implementations are effective. The chapter discusses the added value injected in the science demonstrators and resulting from the reuse of D4Science services, especially regarding Open Science practices and overall quality of service

    Broadband Meter-Wavelength Observations of Ionospheric Scintillation

    Full text link
    Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally these observations are relatively narrow band. With Low Frequency Array (LOFAR) technology at the Kilpisj\"arvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a 3 octave bandwidth. ``Parabolic arcs'', which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broad-band observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250\,MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disappeared after transit although scintillations continued to be obvious during the entire observation. We show that this can be attributed to the structure of Cygnus-A. Initial results from modeling these scintillation arcs are consistent with simultaneous ionospheric soundings taken with other instruments, and indicate that scattering is most likely to be associated more with the topside ionosphere than the F-region peak altitude. Further modeling and possible extension to interferometric observations, using international LOFAR stations, are discussed.Comment: 11 pages, 17 figure

    Results from the intercalibration of optical low light calibration sources 2011

    Get PDF
    Following the 38th Annual European Meeting on Atmospheric Studies by Optical Methods in Siuntio in Finland, an intercalibration workshop for optical low light calibration sources was held in Sodankylä, Finland. The main purpose of this workshop was to provide a comparable scale for absolute measurements of aurora and airglow. All sources brought to the intercalibration workshop were compared to the Fritz Peak reference source using the Lindau Calibration Photometer built by Wilhelm Barke and Hans Lauche in 1984. The results were compared to several earlier intercalibration workshops. It was found that most sources were fairly stable over time, with errors in the range of 5–25%. To further validate the results, two sources were also intercalibrated at UNIS, Longyearbyen, Svalbard. Preliminary analysis indicates agreement with the intercalibration in Sodankylä within about 15–25%

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Contribution of proton and electron precipitation to the observed electron concentration in October–November 2003 and September 2005

    Get PDF
    Understanding the altitude distribution of particle precipitation forcing is vital for the assessment of its atmospheric and climate impacts. However, the proportion of electron and proton forcing around the mesopause region during solar proton events is not always clear due to uncertainties in satellite-based flux observations. Here we use electron concentration observations of the European Incoherent Scatter Scientific Association (EISCAT) incoherent scatter radars located at Tromsø (69.58° N, 19.23° E) to investigate the contribution of proton and electron precipitation to the changes taking place during two solar proton events. The EISCAT measurements are compared to the results from the Sodankylä Ion and Neutral Chemistry Model (SIC). The proton ionization rates are calculated by two different methods – a simple energy deposition calculation and the Atmospheric Ionization Model Osnabrück (AIMOS v1.2), the latter providing also the electron ionization rates. Our results show that in general the combination of AIMOS and SIC is able to reproduce the observed electron concentration within ± 50% when both electron and proton forcing is included. Electron contribution is dominant above 90 km, and can contribute significantly also in the upper mesosphere especially during low or moderate proton forcing. In the case of strong proton forcing, the AIMOS electron ionization rates seem to suffer from proton contamination of satellite-based flux data. This leads to overestimation of modelled electron concentrations by up to 90% between 75–90 km and up to 100–150% at 70–75 km. Above 90 km, the model bias varies significantly between the events. Although we cannot completely rule out EISCAT data issues, the difference is most likely a result of the spatio-temporal fine structure of electron precipitation during individual events that cannot be fully captured by sparse in situ flux (point) measurements, nor by the statistical AIMOS model which is based upon these observations

    Soil mobility of surface applied polyaromatic hydrocarbons in response to simulated rainfall

    Get PDF
    Polyaromatic hydrocarbons (PAHs) are emitted from a variety of sources and can accumulate on and within surface soil layers. To investigate the level of potential risk posed by surface contaminated soils, vertical soil column experiments were conducted to assess the mobility, when leached with simulated rainwater, of six selected PAHs (naphthalene, phenanthrene, fluoranthene, pyrene, benzo(e)pyrene and benzo(ghi)perylene) with contrasting hydrophobic characteristics and molecular weights/sizes. The only PAH found in the leachate within the experimental period of 26 days was naphthalene. The lack of migration of the other applied PAHs were consistent with their low mobilities within the soil columns which generally parallelled their log Koc values. Thus only 2.3% of fluoranthene, 1.8% of pyrene, 0.2% of benzo(e)pyrene and 0.4% of benzo(ghi)perylene were translocated below the surface layer. The PAH distributions in the soil columns followed decreasing power relationships with 90% reductions in the starting levels being shown to occur within a maximum average depth of 0.94 cm compared to an average starting depth of 0.5 cm. A simple predictive model identifies the extensive time periods, in excess of 10 years, required to mobilise 50% of the benzo(e)pyrene and benzo(ghi)perylene from the surface soil layer. Although this reduces to between 2 and 7 years for fluoranthene and pyrene, it is concluded that the possibility of surface applied PAHs reaching and contaminating a groundwater aquifer is unlikely

    Results from the intercalibration of optical low light calibration sources 2011

    Get PDF
    Following the 38th Annual European Meeting on Atmospheric Studies by Optical Methods in Siuntio in Finland, an intercalibration workshop for optical low light calibration sources was held in Sodankylä, Finland. The main purpose of this workshop was to provide a comparable scale for absolute measurements of aurora and airglow. All sources brought to the intercalibration workshop were compared to the Fritz Peak reference source using the Lindau Calibration Photometer built by Wilhelm Barke and Hans Lauche in 1984. The results were compared to several earlier intercalibration workshops. It was found that most sources were fairly stable over time, with errors in the range of 5–25%. To further validate the results, two sources were also intercalibrated at UNIS, Longyearbyen, Svalbard. Preliminary analysis indicates agreement with the intercalibration in Sodankylä within about 15–25%.publishedVersio
    • …
    corecore