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Abstract. This paper presents a comparison between stan-

dard ionospheric parameters manually and automatically

scaled from ionograms recorded at the high-latitude So-

dankylä Geophysical Observatory (SGO, ionosonde SO166,

64.1◦ geomagnetic latitude), located in the vicinity of the au-

roral oval. The study is based on 2610 ionograms recorded

during the period June–December 2013. The automatic scal-

ing was made by means of the Autoscala software. A few

typical examples are shown to outline the method, and statis-

tics are presented regarding the differences between manu-

ally and automatically scaled values of F2, F1, E and spo-

radic E (Es) layer parameters.

We draw the conclusions that:

1. The F2 parameters scaled by Autoscala, foF2 and

M(3000)F2, are reliable.

2. F1 is identified by Autoscala in significantly fewer cases

(about 50 %) than in the manual routine, but if identified

the values of foF1 are reliable.

3. Autoscala frequently (30 % of the cases) detects an E

layer when the manual scaling process does not. When

identified by both methods, the Autoscala E-layer pa-

rameters are close to those manually scaled, foE agree-

ing to within 0.4 MHz.

4. Es and parameters of Es identified by Autoscala are in

many cases different from those of the manual scaling.

Scaling of Es at auroral latitudes is often a difficult task.

1 Introduction

Ionosondes for studying the ionosphere were invented in the

late 1920s, and their worldwide implementation started in the

1940s as military shortwave communication became impor-

tant. An ionosonde is a radio echo instrument transmitting ra-

dio waves of alternating frequency, receiving reflections from

the ionosphere, and measuring the travel times of the waves

at different frequencies. The return power vs. frequency and

travel time is presented as graphs called ionograms, from

which information on the structure of the ionosphere can be

derived. The travel times 1t are presented as virtual heights

h′ = c1t
2

; the true reflection heights are different due to the

significant radio-wave refraction close to the critical iono-

spheric plasma frequencies. Up to four distinct layers, called

the D, E, F1 and F2 regions, respectively, in increasing al-

titude order, can be identified in ionograms, depending on

location, season and time of day.

Historically, the shapes of ionograms are described by

a number of standard parameters (Piggott and Rawer, 1978).

This is useful in order to characterise the main features

of the ionosphere, such as what frequencies are usable for

long distance communication. These parameters have been

read out manually at several observatories since the 1950s,

a procedure referred to as ionogram scaling. Thus, time se-

ries of continuous ionospheric observations span several so-

lar cycles, and in order to monitor long-term environmental

changes these observations must be continued in a consis-

tent way without significant methodological changes. How-
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ever, manual scaling of ionograms requires substantial work

efforts and the results are subjective, so development of au-

tomatic scaling routines has started and progressed together

with recent developments in computer performance.

One such routine is Autoscala (Pezzopane and Scotto,

2005), which has been developed at the Italian National Insti-

tute of Geophysics and Volcanology (INGV) in Rome. Au-

toscala is a program able to perform an automatic scaling

of vertical soundings, giving as output the main ionospheric

characteristics (Pezzopane and Scotto, 2007, 2008, 2010;

Scotto and Pezzopane, 2007, 2008; Scotto et al., 2012) and an

estimation of the electron density profile (Scotto, 2009). It is

based on an image recognition technique and can run with-

out polarisation information, which allows the algorithm to

be applied to any kind of ionosonde (Pezzopane et al., 2010).

Autoscala works by defining a set S of N pairs of empir-

ical curves S ≡
{
Ti[o], Ti[x]

}
, i = 1,2, . . .,N , fitting the typ-

ical shape of the F2 ordinary and extraordinary traces. For

each pair of curves Ti[o], Ti[x] the local contrast C with the

recorded ionogram is calculated, making allowance for both

the number of matched points and their amplitude. The pair

of curves Ti[o], Ti[x] having the maximum value of C is then

selected. If this value of C is greater than a fixed threshold

Ct, the selected curves are considered as representative of

the traces. The values of the critical frequencies are thus ob-

tained from the selected curves. If C does not exceed Ct, the

routine assumes that the F2 trace is not present on the iono-

gram. With a similar procedure, the F1 and Es traces are also

detected.

The accuracy of the Autoscala output has been tested

against manually validated data at low and middle lati-

tudes. Specifically, the low-latitude stations considered to

test Autoscala were those of Tucumán (26.9◦ S, 294.6◦ E),

Argentina (Pezzopane et al., 2007), and São João do Cariri

(7.5◦ S, 323.8◦ E), Brazil (Scotto and MacDougall, 2012).

The corresponding results showed that the abilities of Au-

toscala are fairly good and reliable, except for the cases of

ionograms characterised by the presence of F1.5 or F3 lay-

ers, as was illustrated by Scotto (2009).

The mid-latitude stations considered to test Autoscala

were those of Rome (41.8◦ N, 12.5◦ E) and Gibilmanna

(37.9◦ N, 14.0◦ E), Italy (Pezzopane and Scotto, 2004, 2005,

2007, 2008; Scotto and Pezzopane, 2007), Moscow (55.5◦ N,

37.5◦ E), Russia (Krasheninnikov et al., 2010), Warsaw

(52.2◦ N, 21.1◦ E), Poland (Pezzopane et al., 2008, 2010),

Delaware (43.0◦ N, 278.8◦ E), Canada (Scotto and Mac-

Dougall, 2012) and Boulder (40.0◦ N, 105.3◦W), Colorado,

USA (Bullett et al., 2010). The corresponding results showed

that the output given by Autoscala is reliable and accurate

and, at times, better than that given by the Automatic Real-

Time Ionogram Scaling with True-height (ARTIST) system

(Reinisch et al., 2009; Galkin and Reinisch, 2008; Pezzopane

and Scotto, 2005, 2007).

Experience from high-latitude stations, including the two

different automatically scaling ionosondes at the EISCAT

transmitter site at Ramfjordmoen, Norway (69◦ N latitude),

a Dynasonde (Rietveld et al., 2008) and a Digisonde (see e.g.

Reinisch et al., 2009), shows that in the auroral zone auto-

matically scaled parameters may differ significantly. These

two instruments, however, use quite different echo detection

and selection techniques and the results depend much on how

noise and interference are rejected.

The present comparison is based on ionograms from the

ionosonde at the Sodankylä Geophysical Observatory (SGO,

67◦ N, 26◦ E, 64.1◦ CGMLAT). In contrast to the two instru-

ments above, the SGO ionosonde is a so-called chirp sounder.

This technique is based on a continuous wave (CW) trans-

mission of increasing frequency instead of radar pulses.

2 The Sodankylä ionosonde

Ionosondes have been running at SGO, URSI station SO166,

since the International Geophysical Year 1957. The present

ionosonde, called Alpha Wolf, is the third instrument in order

and was installed in 2005. Details of the instrument have also

been described in Kozlovsky et al. (2013). The Alpha Wolf

is a frequency modulated continuous wave (FM CW) chirp

sounder developed at SGO. The FM CW chirp technique

implies that transmission and reception must be simultane-

ous, so the transmitting and receiving antennas are separated

by approximately 1 km. The transmitter antenna is a rhom-

bic wide-band loop. At the receiver site an array of crossed

magnetic loop antennas is installed in order to provide imag-

ing capabilities. However, during these tests the signals from

all antennas were combined into two channels, one per lin-

ear polarisation. The transmitter and receiver are completely

separate systems, starting on the same full second by GPS

synchronisation. The exciter of the transmitter and the local

oscillator of the receiver are basically identical, producing

identical frequency sweeps at a constant rate (chirps). The

name Alpha Wolf derives from the distinct “howling” sound

produced when the down-converted received signal is fed to

a loudspeaker. After mixing and filtering, the base-band con-

verted signal is digitised into data streams of in-phase and

quadrature channels, in total four real vectors or one com-

plex signal per polarisation. The conversion from complex

sampled data to ionograms is simple: because of the linear

frequency sweep, the frequency spread around the centre fre-

quency at each instant in time corresponds to an interval of

range (virtual height). The ionograms are thus obtained by

applying a windowed fast Fourier transform (FFT) to the dig-

ital signal after combining the linearly polarised data into the

O- or X-mode circular polarisation. The centre time of the

FFT window gives the centre frequency and the length of the

window determines the range resolution, both determined by

the frequency sweep rate. The selection of length and over-

lap of the FFT windows thus implies a tradeoff between fre-

quency and range resolution. The ionograms in this paper

were produced with an FFT window length of 4096 points
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Figure 1. Simplified schematic diagram of the SGO ionosonde system and data flow. Note that the transmitter and receiver station are

separated by almost 1 km and have no direct electronic connection. Transmission and reception of the FM CW chirps both start by GPS

synchronisation. Left column: schematics of transmitter station with exciter (direct digital synthesizer) and power amplifier. Filters are not

shown. The transmitter feeds a wide-band rhombic antenna. Centre column: schematics of one receiver channel. Signals from all receiver

antennas are combined into two channels, one per polarisation. The local oscillator is identical to the exciter. Raw data are saved in binary

files containing four real (or two complex) vectors: two linear polarisations, samples of in-phase and quadrature-mixed filtered signals. Right

upper: the real-time processing computer reads the raw data, combines the polarisations into O-mode circular polarisation (applying phase

corrections), and produces ionograms. O-mode ionograms are stored and those from each full hour are interpreted manually. Right lower:

during the described test phase, O- and X-mode ionograms were uploaded to INGV in the raw data format (RDF) required by Autoscala.

and thus the length of the alias-free virtual height scale is up

to 2048 points. Subintervals limited to a maximum of 760 or

1500 km are shown in the figures. Interference from known

shortwave transmitters may be filtered out in the process.

Figure 1 shows a simplified block diagram of the whole

system including data processing. The receiver computer

reads the digital signals from the A/D converter of the re-

ceiver and stores the data temporarily as binary files. These

data are then made available to the processing computers

through the local network. Most important of those comput-

ers is the operational real-time processing computer. Its anal-

ysis software, a single Matlab script, produces O-mode iono-

grams, which are archived and also available online in real

time.

3 Manual scaling of ionograms

The Sodankylä ionosonde ionograms have been interpreted

manually since the start in 1957. Until the deployment of the

present system in 2005, the ionograms were recorded and

scaled on photographic film. For consistency in the time se-

ries of scaled parameters, the present system is designed to

present the ionograms to the scaler in a similar manner. Real-

time ionograms are copied through the local network and

backed up on a dedicated ionogram server, from which they

are read and interpreted on the desktop workstation of the

scaler. Matlab software running on this workstation displays

the O-mode ionograms (see an example in Fig. 2, top panel)

and aids the scaler (in this work: coauthor S. Välitalo) to read
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Figure 2. Example of SGO ionogram scaling. Upper: manual scaling interface with a typical Alpha Wolf O-mode ionogram (5 June 2013,

11:00 UT). Colours in the ionogram represent reflected power from 20 (blue) to 110 dB (red). This colour scale is not used directly by the

scaler but is adjustable for best contrast. Lower: graphical output of Autoscala, input based on the same raw data but with separated, filtered

O-mode (red) and X-mode (green) traces. The boxes in the right panels show the scaled parameters as described in the text.

out the parameters and save their values. The 11 parameters

listed below are routinely scaled once per hour according to

Piggott and Rawer (1978) and Wakai et al. (1987). Addition-

ally ionograms at half hours (full hours+ 30 min) are scaled

for critical frequencies (i.e. excluding the virtual heights).

3.1 Scaled parameters

– fmin is the lowest frequency of reflected waves recorded

in the ionogram.

– foE is the ordinary polarisation mode critical frequency

of the lowest thick stratification in the E region.

– h′E is the minimum virtual height of the normal E layer.

– TypeEs is the classification of sporadic E layers (Es), i.e.

all those thin, reflecting layers observed in the height

range 100–170 km which are not part of the normal E-

and F-layer trace (more details are given in Sect. 5.2).

– foEs is the top frequency of the ordinary wave compo-

nent of continuous Es traces.

– h′Es is the lowest virtual height of the trace from which

foEs is scaled.

– fbEs is the blanketing frequency of the Es layer, i.e. the

lowest frequency at which the Es layer allows reflections

from higher layers.

Geosci. Instrum. Method. Data Syst., 5, 53–64, 2016 www.geosci-instrum-method-data-syst.net/5/53/2016/



C.-F. Enell et al.: Manual and Autoscala scaling of SGO ionograms 57

– h′F is the virtual height of the F layer, i.e. the lowest

virtual height of the F-layer ordinary mode trace.

– foF1 is the ordinary mode critical frequency of the F1

layer (which is formed during the daytime mainly in

summer at heights above 150 km).

– foF2 is the ordinary mode critical frequency of the high-

est stratification in the F region.

– M(3000)F2 is the M factor (maximum usable

frequency factor), which is a conversion fac-

tor for obtaining the maximum usable frequency

MUF(3000)F2 for oblique propagation to a dis-

tance of 3000 km with reflection from the F2 layer,

i.e. MUF(3000)F2=M(3000)F2×foF2. The M factor

depends on the virtual height of the F2 layer and can

be approximated based on a simplified propagation

model as detailed in Piggott and Rawer (1978). This

approximate M factor ranges between 2.04 at 800 km

and up to 4.55 at 200 km, typically close to 3 for

normal F2 heights. In practice, sets of curves of

constant MUF(3000)F2 in the frequency–height plane

are calculated. The curve tangential to the F2 trace is

selected and gives MUF and the M factor as shown in

the upper panel of Fig. 2.

The six parameters indicated in bold face in the above list

are those automatically scaled by Autoscala. Their values are

compared in the following.

4 Automatic scaling

Autoscala works using input ionograms in a specific binary

RDF Pezzopane and Scotto (2005), in which O- and X-mode

traces are saved separately. Hence, in order to apply Au-

toscala to the ionograms recorded by the SGO ionosonde,

a change of file format was required. During the Autoscala

test phase presented here, a second set of real-time ionogram

processing software was therefore installed on a separate

computer in order to produce the required O- and X-mode

traces. A modified and improved version of the real-time

analysis software was used, running under the open source

Matlab-compatible language Octave (Eaton et al., 2015). In

order to improve the contrast of the O- and X-mode traces,

an improved filtering to mask out weak echoes was applied

when converting the data to ionograms. This filtering may be

necessary in order for the automatic scaling to find the nor-

mal E- and F-layer ionogram traces, but as will be seen it

may also mask out real features, such as spread F and spo-

radic E layers. The filtered O- and X-mode traces were inter-

polated to matrices of fixed frequency and height resolution

as required by Autoscala. Subsequently the data were saved

as RDF files and automatically copied to INGV in Rome for

processing. Matlab scripts for writing RDF files are available

on request from the corresponding author.

Figure 2 shows an example that makes the difference be-

tween the standard O-mode real-time ionograms and the fil-

tered RDF ionograms clear. The standard ionogram in the

upper panel does show some X-mode leakage, which is dis-

regarded in the manual scaling process. The panel below is

the output from Autoscala, showing both the filtered traces

and retrieved parameters. The ionospheric traces in the fil-

tered RDF ionogram are more distinct as compared with the

standard ones, but there are many additional spurious appar-

ent echoes that look like noise. These may at least partly be

due to the interpolation to the fixed range–height grid of the

RDF format. An additional filtering (e.g. median filtering)

could be applied to remove them, but it seems that these spu-

rious echoes do not affect the Autoscala scaling.

5 Results of comparison

The Autoscala scaling was applied to SGO ionograms from

the period June–December 2013: 1 June–1 July (summer sol-

stice, ionosphere constantly sunlit), 29 July–13 October (late

summer and equinox) and 1–19 December 2013 (midwin-

ter); in total 117 days. Out of the data from these days, 2610

ionograms were analysed both manually and automatically.

5.1 Comparison of scaled parameters

Figure 3 presents a comparison of manually and automati-

cally scaled parameters for 5 June 2013 (selected as an in-

structive case with well-defined E- and F-layer traces). The

five panels in the plot represent (from top to bottom):

1. M(3000)F2, shown by red asterisks (manual) and black

circles (Autoscala);

2. F-layer O-mode critical frequencies: foF2 (red asterisks

for manual and black circles for Autoscala), and foF1

(blue stars for manual and black squares for Autoscala);

3. E-layer O-mode critical frequency, foE (red asterisks for

manual and black circles for Autoscala);

4. critical frequency of sporadic E layers, foEs (red aster-

isks for manual and black circles for Autoscala); and

5. virtual height of sporadic E layers, h′Es (red asterisks

for manual and black circles for Autoscala), manually

scaled virtual height of E layer, h′E (blue diamonds),

lower edge of E layer, always set to 90 km in Autoscala

(dashed line).

Figure 3 shows a good agreement between automatically

and manually scaled foF2 and foF1. However, scaling of spo-

radic layers appears to be more problematic. Similar daily

summaries were made for all 117 days when at least one of

the 24 ionograms was scaled by Autoscala. The results are

presented in Tables 1, 2 and 3 and shown as histograms in

Figs. 4 and 5.
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Table 1. Number of identifications of F- and E-layer parameters, % out of in total 2610 ionograms. Auroral activity is indicated by the mean

AE index for the cases of both manual and automatic identification and only manual identification, respectively.

Parameter Manual Auto Man and Man only Auto only Mean AE, Mean AE,

Auto man and auto man only

foF2 and M(3000)F2 90.4 87.4 85.9 4.5 1.4 133 360

foF1 35.6 17.6 16.3 19.3 1.3 170 191

foE 58.9 84.9 54.9 4.0 29.9 133 318

foEs and h′Es 63.0 20.0 19.4 43.5 0.6 257 130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
2

2.5

3

3.5

4

4.5

M
(3

00
0)

F
2

04−Jun−2013

 

 
M(3000)F2 man
M(3000)F2 aut

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
80

100

120

140

160

UTC

vi
rt

. h
, k

m

 

 
hE man
hE aut
hEs man
hEs aut

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2

4

6

8

10

fo
F

1 
an

d 
fo

F
2,

 M
H

z

 

 
foF2 man
foF2 aut
foF1 man
foF1 aut

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

5

10

15

fo
E

s,
 M

H
z

 

 
foEs man
foEs aut

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

2

4

6

fo
E

, M
H

z

 

 
foE man
foE aut

Figure 3. Comparison of manually and automatically scaled param-

eters for 4 June 2013. Panel 1: M(3000)F2, panel 2: F-layer O-mode

critical frequencies, panel 3: foE, panel 4: foEs and panel 5: E-layer

virtual heights. Autoscala always assumes the lower edge of the E

layer at 90 km (dashed line). The yellow dot on the time axis indi-

cates a time (18:00 UT) when the ionosonde was not operating.

Table 1 presents the relative number (%) of ionograms in

which a certain parameter was identified manually, automat-

ically, by both methods, and by one method only. The F2

layer is in general well identified by Autoscala, whereas for

the other layers (F1, E and Es) the coincidence of visual and

Table 2. Differences between manually scaled and Autoscala values

(manual− auto).

Parameter Mean±SD Median Q1 Q3

1M(3000)F2 −0.02± 0.16 −0.04 −0.11 0.06

1foF2 (MHz) 0.0± 0.4 0.1 −0.1 0.1

1foF1 (MHz) 0.1± 0.1 0.1 0.0 0.2

1foE (MHz) 0.0± 0.4 0.0 −0.2 0.1

1foEs (MHz) 0.5± 1.2 0.6 0.1 1.0

1h′Es (km) −6.0± 8.3 −3.7 −9.3 −0.1

Manual h′E (km) 96± 11 92 89 98

SD = standard deviation, Q1 = first quartile, Q3 = third quartile.

automatic identifications is rather low. In particular, the au-

tomatic routine identifies an E layer in many cases when

the manual scaler does not. This happens mainly because

the manual routine assumes that no E layer exists during

nighttime, so for night hours (intervals depending on time

of year) foE is not scaled manually at all. In such night cases

the Autoscala output frequently provides a model value of

foE= 0.5 MHz. Moreover, in many cases it seems that the

Autoscala foE is close to prior model values for daytime as

well. On the other hand, F1 and especially Es layers are fre-

quently not identified at all by Autoscala.

The two rightmost columns in Table 1 present averaged

values of the AE index (which characterises geomagnetic

activity at auroral latitudes) for the cases when layers were

identified both manually and automatically, and only manu-

ally, respectively. One may expect that under more disturbed

conditions the automatic scaling works less satisfactorily. In-

deed, the data in Table 1 indicate such a tendency for the

F2 and E layers, namely that cases of only manual identifi-

cations occur under noticeably larger average AE conditions

(360–318 nT vs. 133 nT). The relative number of such iden-

tifications apparently affected by auroral activity was of the

order of 5–7 %. For F1 the AE dependency of automatic iden-

tification is not obvious.

Table 1 also shows that automatic identification of spo-

radic layers works better under disturbed conditions. How-

ever, this is not surprising. Indeed, many sporadic layers

at auroral latitudes are produced by auroral precipitation,

so that the most dense and distinctive Es (which are most

Geosci. Instrum. Method. Data Syst., 5, 53–64, 2016 www.geosci-instrum-method-data-syst.net/5/53/2016/
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Figure 4. Distributions (histograms) of the differences between manually and automatically scaled parameters. Numbers (N ) on top of the

panels indicate the numbers of ionograms for which both manual and Autoscala parameter values were obtained, and, hence, the differences

were calculated. Vertical lines show medians and quartiles.

Table 3. Scaled parameters of sporadic E layers.

Type Es N man % auto 1foEs (MHz), man− auto 1h′Es (MHz), man− auto

Mean±SD Median Q1 Q3 Mean ± SD Median Q1 Q3

C 328 35 0.7± 1.0 0.7 0.1 1.0 −0.5± 4.5 0.1 −1.3 1.6

H 244 7 0.6± 0.6 0.4 0.1 0.8 0.2± 2.6 0.7 −2.6 1.8

L 373 25 0.4± 1.2 0.4 0.0 1.0 −5.4± 4.8 −6.2 −9.3 −1.6

F 128 41 0.5± 1.3 0.5 0.1 1.1 −4.2± 6.7 −3.2 −6.2 −0.1

A 105 19 0.2± 1.4 0.5 0.1 0.8 −14.5± 11 −13.0 −25.7 −4.7

R 389 43 0.6± 1.3 0.7 0.3 1.2 −9.5± 9.1 −6.9 −13.7 −3.2

K 79 53 0.0± 1.1 0.3 −0.3 0.6 −9.5± 8.8 −8.9 −15.4 −1.6

SD = standard deviation, Q1 = first quartile, Q3 = third quartile.

easily detected by Autoscala) occur during disturbed condi-

tions. On the other hand, an experienced scaler may notice

less prominent, weaker layers during more quiet conditions,

which are not identified by the automatic scaling.

Some examples of erroneous identifications and possible

reasons will be discussed further in Sect. 5.3.

Table 2 presents statistics of the differences between the

manually and automatically scaled values of all parameters.

In the bottom row we present only manually scaled h′E, since

Autoscala always assumes the height to be 90 km. These

results are also illustrated by histograms in Figs. 4 and 5,

where Fig. 4 shows the distributions of the differences be-

tween manually and automatically scaled parameter values

with medians and quartiles, and Fig. 5 shows the distribution

of manually scaled h′E values and the fixed height of 90 km

assumed by Autoscala. The distribution of manually scaled

values has its most probable value close to 90 km as well,

so the assumption is reasonable, but there is a long tail of

h′E observations well above 100 km. It will be seen that the

occurrence of such E layers presents a problem.

The results can be summarised as follows:
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Figure 5. Distribution of h′E scaled manually. The red line at 90 km

indicates the fixed height assumed in Autoscala. The mode of the

manually scaled h′E distribution is close to 90 km as well.

– Generally, there is a very good agreement between the

manually and automatically scaled F2 parameters, foF2

and M(3000)F2. They were identified by Autoscala in

86 % of the cases with an accuracy of 0.4 MHz and 0.16

units, respectively.

– The F1 layer was detected by Autoscala in only about

half of those cases when it was identified manually. In

the cases of detection, however, the values of foF1 were

reliable within an accuracy of 0.1 MHz.

– For E, the foE values from Autoscala were within

0.4 MHz of those obtained manually when scaled. Au-

toscala identifies foE in many cases (30 % of all iono-

grams) when no E layer was identified by the manual

scaling. See also an example in Sect. 5.3 below.

– Sporadic E layers (Es) were identified by Autoscala in

relatively few cases (about one-third of the manual de-

tections). The difference between manually and auto-

matically scaled parameters may be significant.

It thus appears that sporadic E layers are the most difficult

to scale automatically. In the next section this is considered

in more detail.

5.2 Scaling of sporadic E layers

Es layers (e.g. Turunen and Rao, 1976) are typically caused

by metallic ions. In the auroral oval, however, there are addi-

tional specific sporadic layers caused by auroral ionisation.

Since auroral precipitation varies rapidly both in intensity

and horizontal localisation within the timescale of typical

ionosoundings (even the 1 min resolution of Alpha Wolf),

and is also often followed by strong D-layer absorption pre-

venting the observation of higher layers, the scaling of spo-

radic E layers at auroral latitudes is often a difficult task.

Sporadic E layers are classified by assigning them to one

or more of the following types according to the shape and

strength (blanketing of higher layers) of the trace. More than

one type can be observed in a single ionogram and in these

cases foEs and h′Es are given for the layer with maximal

foEs. The rules for classification are described in detail in

the URSI handbook of ionogram interpretation (Piggott and

Rawer, 1978).

5.2.1 Mid-latitude types

The following types of sporadic E layers are those which can

be observed at subauroral latitudes. They can occur every-

where, however. The list does not include the equatorial type

(q) which is only seen close to the magnetic equator.

– C (cusp) is an Es trace showing a relatively symmetrical

cusp at or below the critical frequency of the normal E

or particle E layer.

– H (high) is an Es trace showing a discontinuity in height

with the normal E or particle E-layer trace at or above

the critical frequency. The cusp is not symmetrical.

– L (low) is a flat Es trace below the normal E or particle

E minimum virtual height.

– F (flat) is a clean Es trace which shows no appreciable

increase of height with frequency. Only applicable when

no values of foE are obtainable (i.e. during nighttime).

At other hours, similar Es traces are classified as L, C or

H.

5.2.2 High-latitude types

The following types of sporadic E layers occur as a result of

particle precipitation.

– R (retardation) is an Es trace showing an increase in vir-

tual height at the high frequency end but which becomes

partially transparent below foEs.

– K (particle) denotes the presence of a particle E layer,

similar in appearance to normal E, which obscures

higher layers up to its critical frequency.

– A (auroral) denotes all types of very spread Es traces

typical of oblique reflections from structures that are

both small in spatial scales and varying rapidly in time

as compared with the sounding time. The typical pattern

shows a well-defined flat or gradually rising lower edge

with stratified or diffuse traces present above it.
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Figure 6. Differences between manual and Autoscala scaling arising from high latitude sporadic E phenomena. Black lines show manually

scaled parameters, and red colour (lines and/or letter) indicates Autoscala results. Example 1: foEs identified as foE, and the slant Es (type S)

identified as an F layer.

Figure 7. Differences between manual and Autoscala scaling arising from high latitude sporadic E phenomena. Black lines show manually

scaled parameters, and red colour (lines and/or letter) indicates Autoscala results. Example 2: overestimated foEs (13.7 MHz vs. manual

4.9 MHz).

5.2.3 Indicated but not scaled

– S (slant) is a diffuse Es trace whose virtual height rises

steadily with frequency.

– D (D layer) is not strictly a sporadic E layer but a weak

diffuse trace at or below 95 km associated with high ab-

sorption and consequently high fmin.

In Table 3, we present a comparison of manual and Au-

toscala parameters separately for each type of Es. The first

three columns in the left present types of Es, numbers of

manual identifications and percentage of Autoscala identifi-

cations. Then, averaged differences between manually and

automatically scaled values are presented as mean values

with standard deviations and median values with upper and

lower quartiles.
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Figure 8. Differences between manual and Autoscala scaling arising from high latitude sporadic E phenomena. Black lines show manually

scaled parameters, and red colour (lines and/or letter) indicates Autoscala results. Example 3: Underestimated foEs (3.0 MHz vs. manual

7.0 MHz)

Figure 9. Differences between manual and Autoscala scaling arising from high latitude sporadic E phenomena. Black lines show manually

scaled parameters, and red colour (lines and/or letter) indicates Autoscala results. Example 4: Error in h′Es scaling (117 km vs. manual

91 km).

From Table 3 it is evident that K, R and F types were bet-

ter recognised by Autoscala, whereas the H type was seldom

identified. Autoscala typically underestimates foEs by about

0.5 MHz, and the virtual height is typically overestimated,

especially for the high-latitude type Es (up to the order of

10 km).

5.3 Examples of problems

Scaling of high-latitude ionograms is often difficult even for

an experienced scaler, due to phenomena such as particle pre-

cipitation and oblique reflections. A comprehensive consid-

eration of particular cases is beyond the scope of the present

paper, but to illustrate possible problems we present a few

examples in Figs. 6, 7, 8 and 9 that point out differences

between manual and Autoscala scaling. In these ionograms
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black lines show manually scaled parameters, and red colour

(lines and/or letters) indicates Autoscala results.

In Fig. 6, foEs (scaled manually at 3.5 MHz) was iden-

tified as foE. The foEs value was automatically detected at

4.8 MHz and h′Es was detected near 126 km. The slant Es

(type S) was identified as an F layer with foF2 = 9.9 MHz. In

Fig. 7, the manually scaled foEs is 4.9 MHz, whereas Au-

toscala finds foEs = 13.7 MHz. One more example of foEs

difficulties is given in Fig. 8, where the Autoscala value is

3.0 MHz, whereas the manually scaled value is 7.0 MHz. Fig-

ure 9 shows an example of h′Es, identified manually at 91 km

and by Autoscala at 117 km.

However, with regard to this issue it is worth underlining

the two following points:

1. The Autoscala routine for autoscaling the Es layer is de-

signed mostly for mid-latitude ionograms (Scotto and

Pezzopane, 2007).

2. The filtering process applied when generating RDF

ionograms from raw SGO Alpha Wolf ionosonde data

often causes a deletion of significant parts of the iono-

gram trace, especially those related to spread F and Es

features. Although improving the contrast of normal E

and F traces, this clearly affects the ability of the Au-

toscala Es routine.

6 Conclusions

In summary, this comparison between manual and Autoscala

scaling of ionograms at the high-latitude Sodankylä Geo-

physical Observatory site has shown that:

1. The F2 parameters (foF2 and M(3000)F2) were iden-

tified by Autoscala in 86 % of the manually identified

cases, within 0.4 MHz and 0.16 units, respectively.

2. F1 is identified by Autoscala in significantly fewer cases

(about 50 %) than manually identified, but when identi-

fied the values of foF1 were reliable within 0.1 MHz.

3. E-layer parameters found by Autoscala are close to the

manually scaled ones when those are scaled, foE agree-

ing within an accuracy of 0.4 MHz. However, Autoscala

detects E layers in many cases when the manual scal-

ing process either does not identify one or assumes that

none exist during nighttime.

4. The identification and classification of sporadic E lay-

ers are in many cases very different from those of the

manual scaling.

Scaling of ionograms at auroral latitudes is, in many cases,

a demanding task. Often there are multiple oblique echoes

from different ranges which show up as spread traces, and an-

other difficulty is presented by the frequent sporadic E layers

caused by auroral precipitation. Energetic particle precipita-

tion also sometimes causes D-layer absorption that blankets

E and F echoes. This makes automatic scaling less straight-

forward as compared to scaling of ionograms from mid lat-

itudes. More studies, including scaling of ionograms pro-

cessed from the raw recorded data with different FFT and

filter parameters, will be required in order to find optimal

settings for the contrast of normal E and F traces, which is

a tradeoff with the detectability of sporadic E and spread F.
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