101 research outputs found

    Superhydrophobic surfaces as a source of airborne singlet oxygen through free space for photodynamic therapy

    Get PDF
    A superhydrophobic (SH) sandwich system has been developed to enable "contact-free" airborne singlet oxygen (1O2) delivery to a water droplet. The contact-free feature means that the sensitizer is physically separated from the droplet, which presents opportunities for photodynamic therapy (PDT). Trapping of airborne 1O2 in a H2O droplet residing on a lower SH surface was monitored with 9,10-anthracene dipropionate dianion by varying distances to an upper 1O2-generating surface. Short distances of 20 μm efficiently delivered airborne 1O2 to the droplet in single-digit picomolar steady-state concentrations. Delivery decreases linearly with distance, but 50% of the 1O2 steady-state concentration is trapped at a distance of 300 μm from the generating surface. The 1270 nm luminescence intensity was measured within the SH sandwich system, confirming the presence of airborne 1O2. Physical quenching of 1O2 to ground-state 3O2 by the water droplet itself and both physical and chemical quenching of 1O2 by the water droplet containing the trap 9,10-anthracene dipropionate dianion are observed. Unlike a majority of work in the field of PDT with dissolved sensitizers, where 1O2 diffuses short (hundreds of nanometers) distances, we show the delivery of airborne 1O2 via a superhydrophobic surface is effective through air in tenths of millimeters distances to oxidize an organic compound in water. Our results provide not only potential relevance to PDT but also surface bacterial inactivation processes.Fil: Aebisher, David. University Of Rzeszow; PoloniaFil: Bartusik-Aebisher, Dorota. University Of Rzeszow; PoloniaFil: Belh, Sarah J.. City University of New York; Estados UnidosFil: Ghosh, Goutam. City University of New York; Estados UnidosFil: Durantini, Andres Matías. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Liu, Yang. City University of New York; Estados UnidosFil: Xu, QianFeng. City University of New York; Estados UnidosFil: Lyons, Alan M.. City University of New York; Estados UnidosFil: Greer, Alexander. City University of New York; Estados Unido

    Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    Get PDF
    The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASA's WISE mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false-positives (galaxies, background stars, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 micron excess around a previously known debris disk host star, HD 22128.Comment: 50 pages, accepted for publication in the Astrophysical Journa

    The TESS Triple-9 Catalog II: a new set of 999 uniformly-vetted exoplanet candidates

    Full text link
    The Transiting Exoplanet Survey Satellite (TESS) mission is providing the scientific community with millions of light curves of stars spread across the whole sky. Since 2018 the telescope has detected thousands of planet candidates that need to be meticulously scrutinized before being considered amenable targets for follow-up programs. We present the second catalog of the Plant Patrol citizen science project containing 999 uniformly-vetted exoplanet candidates within the TESS ExoFOP archive. The catalog was produced by fully exploiting the power of the Citizen Science Planet Patrol project. We vetted TESS Objects of Interest (TOIs) based on the results of Discovery And Vetting of Exoplanets DAVE pipeline. We also implemented the Automatic Disposition Generator, a custom procedure aimed at generating the final classification for each TOI that was vetted by at least three vetters. The majority of the candidates in our catalog, 752752 TOIs, passed the vetting process and were labelled as planet candidates. We ruled out 142142 candidates as false positives and flagged 105105 as potential false positives. Our final dispositions and comments for all the planet candidates are provided as a publicly available supplementary table.Comment: 17 pages, 11 figures, 5 tables. Accepted for publication on MNRA

    Follow-up Imaging of Disk Candidates from the Disk Detective Citizen Science Project: New Discoveries and False Positives in WISE Circumstellar Disk Surveys

    Get PDF
    The Disk Detective citizen science project aims to find new stars with excess 22 m emission from circumstellar dust in the All WISE data release from the Wide-field Infrared Survey Explorer. We evaluated 261 Disk Detective objects of interest with imaging with the Robo-AO adaptive optics instrument on the 1.5 m telescope at Palomar Observatory and with RetroCam on the 2.5 m du Pont Telescope at Las Campanas Observatory to search for background objects at 0 1512 separations from each target. Our analysis of these data leads us to reject 7% of targets. Combining this result with statistics from our online image classification efforts implies that at most7.9%0.2% of All WISE-selected infrared excesses are good disk candidates. Applying our false-positive rates to other surveys, we find that the infrared excess searches of McDonald et al. and Marton et al. all have false-positiverates >70%. Moreover, we find that all 13 disk candidates in Theissen & West with W4 signal-to-noise ratio >3are false positives. We present 244 disk candidates that have survived vetting by follow-up imaging. Of these,213 are newly identified disk systems. Twelve of these are candidate members of comoving pairs based on Gaia astrometry, supporting the hypothesis that warm dust is associated with binary systems. We also note the discovery of 22 m excess around two known members of the ScorpiusCentaurus association, and we identifyknown disk host WISEA J164540.79-310226.6 as a likely Sco-Cen member. Thirty of these disk candidates arecloser than 125 pc (including 26 debris disks), making them good targets for both direct-imaging exoplanetsearches

    Near-IR sensitization of wide band gap oxide semiconductor by axially anchored Si-naphthalocyanines

    Get PDF
    Near-IR dye sensitized solar cells are very interesting due to their potential applications in panchromatic cells, semi-transparent windows and in tandem cells. In this work we show the utilization of axially anchored Si-naphthalocyanine dye in the spectral sensitization of TiO2 nanostructured photoelectrodes. We report the first successful evaluation of a naphthalocyanine in the production of sensitized photocurrent with maximum incident photon to current efficiency (IPCE) at λ 790 n

    Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment

    Get PDF
    Antimicrobial photodynamic therapy (aPDT) has emerged in the clinical field as a potential alternative to antibiotics to treat microbial infections. No cases of microbial viability recovery or any resistance mechanisms against it are yet known. 5,10,15-tris(1-Methylpyridinium-4-yl)-20-(pentafluorophenyl)-porphyrin triiodide (Tri-Py+-Me-PF) was used as photosensitizer. Vibrio fischeri and recombinant Escherichia coli were the studied bacteria. To determine the bacterial recovery after treatment, Tri-Py+-Me-PF (5.0 μM) was added to bacterial suspensions and the samples were irradiated with white light (40 W m−2) for 270 minutes. Then, the samples were protected from light, aliquots collected at different intervals and the bioluminescence measured. To assess the development of resistance after treatment, bacterial suspensions were exposed to white light (25 minutes), in presence of 5.0 μM of Tri-Py+-Me-PF (99.99% of inactivation) and plated. After the first irradiation period, surviving colonies were collected from the plate and resuspended in PBS. Then, an identical protocol was used and repeated ten times for each bacterium. The results suggest that aPDT using Tri-Py+-Me-PF represents a promising approach to efficiently destroy bacteria since after a single treatment these microorganisms do not recover their viability and after ten generations of partially photosensitized cells neither of the bacteria develop resistance to the photodynamic process

    Photosensitized Membrane Permeabilization Requires Contact-Dependent Reactions between Photosensitizer and Lipids.

    Get PDF
    Although the general mechanisms of lipid oxidation are known, the chemical steps through which photosensitizers and light permeabilize lipid membranes are still poorly understood. Herein we characterized the products of lipid photooxidation and their effects on lipid bilayers, also giving insight into their formation pathways. Our experimental system was designed to allow two phenothiazinium-based photosensitizers (methylene blue, MB, and DO15) to deliver the same amount of singlet oxygen molecules per second to 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine liposome membranes, but with a substantial difference in terms of the extent of direct physical contact with lipid double bonds; that is, DO15 has a 27-times higher colocalization with ω-9 lipid double bonds than MB. Under this condition, DO15 permeabilizes membranes at least 1 order of magnitude more efficiently than MB, a result that was also valid for liposomes made of polyunsaturated lipids. Quantification of reaction products uncovered a mixture of phospholipid hydroperoxides, alcohols, ketones, and aldehydes. Although both photosensitizers allowed the formation of hydroperoxides, the oxidized products that require direct reactions between photosensitizer and lipids were more prevalent in liposomes oxidized by DO15. Membrane permeabilization was always connected with the presence of lipid aldehydes, which cause a substantial decrease in the Gibbs free energy barrier for water permeation. Processes depending on direct contact between photosensitizers and lipids were revealed to be essential for the progress of lipid oxidation and consequently for aldehyde formation, providing a molecular-level explanation of why membrane binding correlates so well with the cell-killing efficiency of photosensitizers

    Spitzer Follow-up of Extremely Cold Brown Dwarfs Discovered by the Backyard Worlds: Planet 9 Citizen Science Project

    Get PDF
    We present Spitzer follow-up imaging of 95 candidate extremely cold brown dwarfs discovered by the Backyard Worlds: Planet 9 citizen science project, which uses visually perceived motion in multiepoch Wide-field Infrared Survey Explorer (WISE) images to identify previously unrecognized substellar neighbors to the Sun. We measure Spitzer [3.6]–[4.5] color to phototype our brown dwarf candidates, with an emphasis on pinpointing the coldest and closest Y dwarfs within our sample. The combination of WISE and Spitzer astrometry provides quantitative confirmation of the transverse motion of 75 of our discoveries. Nine of our motion-confirmed objects have best-fit linear motions larger than 1'' yr⁻¹; our fastest-moving discovery is WISEA J155349.96+693355.2 (μ ≈ 2.”15 yr⁻¹), a possible T-type subdwarf. We also report a newly discovered wide-separation (~400 au) T8 comoving companion to the white dwarf LSPM J0055+5948 (the fourth such system to be found), plus a candidate late T companion to the white dwarf LSR J0002+6357 at 5 5 projected separation (~8700 au if associated). Among our motion-confirmed targets, five have Spitzer colors most consistent with spectral type Y. Four of these five have exceptionally red Spitzer colors suggesting types of Y1 or later, adding considerably to the small sample of known objects in this especially valuable low-temperature regime. Our Y dwarf candidates begin bridging the gap between the bulk of the Y dwarf population and the coldest known brown dwarf
    corecore