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ABSTRACT: Although the general mechanisms of lipid oxidation are known, the chemical steps through which photosensitizers 

and light permeabilize lipid membranes are still poorly understood. Herein we characterized the products of lipid photooxidation, 

and their effects on lipid bilayers, also giving insight into their formation pathways. Our experimental system was designed to allow 

two phenothiazinium-based photosensitizers (methylene blue, MB, and DO15) to deliver the same amount of singlet oxygen mole-

cules per second to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposome membranes, but to substantially differ in 

terms of the extent of direct physical contact with lipid double bonds, i.e., DO15 has a 27-times higher co-localization with -9 

lipid double bonds than MB. Under this condition, DO15 permeabilizes membranes at least one order of magnitude more efficiently 

than MB, a result which was also valid for liposomes made of polyunsaturated lipids. Quantification of reaction products uncovered 

a mixture of phospholipid hydroperoxides, alcohols, ketones and aldehydes. Although both photosensitizers allowed the formation 

of hydroperoxides, the oxidized products that require direct reactions between photosensitizers and lipids are more prevalent in 

liposomes oxidized by DO15. Membrane permeabilization was always connected with the presence of lipid aldehydes, which cause 

a substantial decrease in the Gibbs free energy barrier for water permeation. Processes depending on direct contact between photo-

sensitizers and lipids were revealed to be essential for the progress of peroxidation and consequently for aldehyde formation, 

providing a molecular-level explanation of why membrane binding is so well correlated with the cell-killing efficiency of photosen-

sitizers. 

INTRODUCTION 

Photosensitized oxidations, which are reactions elicited by 

the interaction of light with a photosensitizer molecule (PS) in 

the presence of oxygen, have well-known detrimental biologi-

cal effects (e.g. skin aging and cancer
1
 and inhibition of photo-

synthesis
2–4

). Remarkably, medical technologies have also 

been ingeniously developed for exploiting these reactions to 

trigger oxidation of biomolecules and consequently to elimi-

nate cancer cells or pathogens
5,6

. Nevertheless, although the 

general mechanisms of photosensitized oxidations are known
7
, 

the detailed molecular steps leading to biological injury re-

main largely uncharacterized
8
. 

Lipid membranes are important targets of photosensitized 

oxidations
9–14

, undergoing several transformations upon lipid 

photooxidation. Many of these transformations are accounted 

to lipid hydroperoxides, which have been detected in photoox-

idized membranes by various techniques (e.g., mass spectrom-

etry, MS)
15–20

. These oxidized lipids, formed as the primary 

product of the reaction of singlet oxygen (
1
O2) with unsaturat-

ed lipids (i.e. ene reaction
21

), adopt modified fatty-acyl chain 

conformations in lipid membranes and lead to lipid lateral 

phase separation, increase in surface area and decrease in 

membrane thickness and elastic moduli
10,22

. Yet, the most 

impacting transformations inflicted on lipids membranes, i.e., 

those breaking down transmembrane chemical gradients
9,23

 

(Scheme 1A), remain poorly understood. Although a general 

scheme of lipid photosensitized oxidation reactions was pro-

posed long ago by Girotti
21

 and despite a multitude of studies 

characterizing biophysical aspects of this phenomenon (e.g., 

permeabilization rates and transmembrane pore opening)
24–27

, 

there is currently a lack of experimental evidence on the nature 

of products and elementary steps leading to membrane perme-

abilization. Underpinning this mechanism is key toward min-

imizing detrimental biological effects of photooxidations
1,2

 

and to improving technologies based on PSs (e.g., photody-

namic therapy, PDT)
6,28

. 
1
O2 is usually considered the prevalent species involved in 

lipid photosensitized oxidations. Diffusing ca. 100 nm in 

water, 
1
O2 can react with targets that are close but not neces-

sarily in direct contact with PSs
8
. Not surprisingly, given its 



 

far action range and high reactivity, most of the efforts on PS 

development for medical applications have thus focused on 

enhancing 
1
O2 generation

8
. A number of findings however 

contest the paradigm that a diffusive species (i.e. 
1
O2) is key to 

causing membrane permeabilization and rather suggest that 

contact-dependent reactions with excited states of PSs (e.g. 

those involving hydrogen or e
- 

 transfer with the biological 

target) may be needed instead (Scheme 1B). Firstly, am-

phiphilic PSs, which partition and insert themselves in mem-

branes, were proven to be the most efficient in experimental 

models ranging from membrane mimetic systems to cancer 

cells and multicellular organisms
9,13,29,30

. In fact, when Ander-

son and Krinsky first reported in the 1970’s that liposomes 

could be lysed by photooxidation, they already questioned 

whether or not 
1
O2 was the major player in this phenomenon

31
. 

Secondly, and contrary to the popular belief that 
1
O2-derived 

lipid hydroperoxides permeabilize membranes, there is grow-

ing experimental and computational evidence showing that 

lipid hydroperoxides form stable membranes that sustain 

chemical gradients
22,32–35

. Thirdly, phospholipid aldehydes 

bearing truncated fatty-acyl chains have been shown to disrupt 

chemical gradients when incorporated to membrane mimetic 

systems and in molecular dynamics simulations
32,34,36–38

. While 

being a plausible intermediate in membrane permeabilization 

mechanisms and being a known product of photosensitized 

oxidations
15

, phospholipid aldehydes have as of today yet to 

be shown to arise in situ during photoinduced membrane per-

meabilization. 

 

Scheme 1. The chemical steps through which photosensi-

tizers (PS) and light permeabilize lipid membranes are still 

poorly understood (A), with the relative importance of 

contact-independent pathways and contact dependent 

pathways remaining to be determined (B). 

 

Blue circles represent photosensitizers, while the purple circle 

represents a mediating, diffusive species. Lipids are represented in 

gold. 

 

Herein we report experimental and theoretical studies to de-

scribing the chemical pathway leading to photoinduced mem-

brane permeabilization. In particular, we designed the experi-

ments in order to quantitatively compare the roles that contact 

independent and contact-dependent processes have in mem-

brane permeabilization. 

 

RESULTS AND DISCUSSION 

Membrane permeabilization and the identity of photoox-

idized lipids. In order to correlate membrane permeabilization 

with lipid oxidation and propose mechanistic routes, we com-

pared the photoinduced effects of two phenothiazinium dyes: 

methylene blue (MB) and DO15 (Figure 1A). The two com-

pounds bear similar photophysical properties (
1
O2 generation 

quantum yield,  = 0.52 and 0.49 ± 0.02, respectively
39

) and 

are chemically similarly, as they are based on the same chro-

mophore structure, though differing drastically in terms of 

hydrophobicity (log P = -0.10 and +1.9, respectively
40,41

) and 

hence of interaction with membranes and membrane damage 

efficiency
39

. As model membranes, we employed in most of 

the experiments liposomes made of 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC), which is a lipid bearing a 

monounsaturated fatty acid (MUFA). Aiming to dissect the 

impact of lipid oxidation products formed by 
1
O2 vs. by con-

tact-dependent reactions (Scheme 1B), we propose an experi-

mental design in which both PSs delivered almost the same 

amount of 
1
O2 to membranes. This was achieved by balancing 

the experimental conditions (e.g., irradiation wavelength and 

PS/lipid ratio) with membrane proximity of the photosensitizer 

and the diffusion range of 
1
O2 within its excited state lifetime, 

resulting in MB and DO15 delivering ca. 160 and 140 
1
O2 

molecules s
-1

 to the liposome membrane, respectively (see 

Supporting Information (SI) for details). Indeed, under this 

experimental condition, the total 
1
O2 NIR emission signals 

coming from MB and DO15 samples endorses that 
1
O2 is 

generated in similar quantities for both dyes (Figure S6). It is 

also noteworthy that in this condition DO15 has a 27-times 

higher co-localization with -9 lipid double bonds than MB, 

which is due to a 21-fold larger number of photosensitizer 

molecules partitioning in the membranes (see SI for calcula-

tion details) and to a 1.3-fold larger overlap with the distribu-

tion of the POPC’s -9 double bond (Table S2 and Figure S3). 

 

 

Figure 1. Photosensitized membrane permeabilization by meth-

ylene blue (MB) and DO15. (A) Structure of photosensitizers MB 

and DO15. (B) Fluorescence enhancement of 5(6)-

carboxyfluorescein (CF) encapsulated in POPC liposomes (10 

mM Tris 0.3 M NaCl, pH = 8) without PS (controls) or with either 

MB or DO15 (15 M), after 120 min in the dark or under light 

exposure (631 nm, 72 ± 1 W m-2). Inset: CF enhancement kinetics 

(left axis, solid marks) and absorbance variations (right axis, 



 

empty marks – MB: 633 nm; DO15 679 nm) for the first 6 min of 

irradiation. *denotes p-value < 0.05. 

Membrane permeabilization assays (Figure 1B, main graph 

and inset, left axis), based on the leakage of the probe 5(6)-

carboxyfluorescein (CF), show that DO15 permeabilize mem-

branes significantly faster (within minutes) than MB, and that 

membrane permeabilization is accompanied by a significant 

decrease in the absorbance of the dye (inset, right axis). Alt-

hough DO15 is ~16-fold more efficient than MB in terms of 

the kinetics of membrane permeabilization as a function of 

irradiation time, after 120 min, both dyes led to liposome 

permeabilization. It is important to mention that neither DO15 

in the absence of light (dark, Figure 1B and Figure S20) nor its 

bleached species (Figure S7) cause membrane permeabiliza-

tion. In addition to that, the chelator DTPA did not affect the 

permeabilization kinetics, ruling out a possible dependence on 

trace metals (Figure S8). The higher efficiency of DO15 to 

permeabilize membranes adds to a general trend of membrane 

permeabilization and PS efficiency being associated to mem-

brane binding, observed for these same PSs in other membrane 

models
39

 and for other classes of PSs in other experimental 

models
9,13,29,30

 This tendency becomes quantitative relevant in 

our experimental design, in which fluxes of 
1
O2 molecules 

reaching the membrane are almost the same, and the level of 

diffusing triplet excited states reaching the membrane is twice 

as large for MB than for DO15 (see SI for details). Indeed, 

permeabilization seems to correlate well with the extent of 

triplets generated within the membrane that co-localize with 

lipid double bonds, which is 13 times larger for DO15 than for 

MB (see SI, section 2.3), suggesting a significant contribution 

of contact-dependent reactions to the formation of oxidized 

lipids. 

While our photosensitizers and lipid were selected to facili-

tate mechanistic studies, with the choice for a monounsaturat-

ed lipid (POPC) preventing competition from auto-oxidation 

processes, we understand that it is critical to test whether or 

not these results also apply for different membrane composi-

tions, including lipid mixtures. Specifically, lipids bearing 

polyunsaturated fatty acids (PUFAs) are important compo-

nents of membranes and, by having bis-allylic hydrogens, 

display a substantially lower energy barrier to fulfill the rate-

limiting H-atom abstraction step of peroxidation propagation. 

To verify if the distinct behavior of DO15 and MB also ap-

plies to PUFA phospholipids, we tested how liposomes made 

of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine 

(PAPC) respond when challenged by MB and DO15 in the 

same experimental condition as described in Figure 1. Figure 

S21 shows that the efficiency ratio between MB and DO15 is 

maintained when oleyl chains are replaced by arachidonoyl, 

suggesting that the same kind of mechanism operates under 

both conditions. Even though PAPC favors radical-mediated 

autooxidation pathways, it also reacts faster than POPC with 

both triplets and singlet oxygen
21,42–44

 (see further discussion 

below). 

HPLC-MS/MS studies of photooxidized liposomes revealed 

three major oxidation products: lipid hydroperoxides (m/z 

792.6), alcohols (m/z 776.6) and ketones (m/z 774.6) (Figure 

2A-B, see also Figure 2C for formation kinetics and SI for 

additional details). While hydroperoxides were the main prod-

ucts for both PSs, DO15 led to more hydroperoxides than MB 

(45 ± 2 M and 13 ± 2 M, respectively, corresponding to 10 

± 1 % and 2.7 ± 0.1 % of the initial POPC concentration), and 

also to a ~4.5-fold higher concentration of total oxidized lipids 

(ca. 60 M). Alcohols and ketones, which were formed in 

smaller quantities than hydroperoxides, totalizing 17 M and 1 

M for DO15 and MB, respectively (4 % and 0.2 % of the 

initial POPC concentration), were also quantified directly from 

the reaction mixture. Both classes of oxidized lipids had been 

previously described to be  products of photosensitized oxida-

tions, but never quantified during the course of membrane 

permeabilization
16,45

. Our observation that alcohols and ke-

tones occur in equimolar proportions (p-value  = 1.000) sug-

gests that they are produced via the Russell mechanism 

(Scheme 2 – step 4), which is based on the decomposition of a 

tetroxide intermediate formed upon combination of two per-

oxyl radicals
46,47

.  

Since our analysis focuses mainly in the initial steps of 

membrane photooxidation that are necessary and sufficient for 

membrane permeabilization, not all classes of oxidized lipid 

species could be directly detected; indeed the absence of trun-

cated phospholipids bearing oxidized moieties (aldehydes and 

carboxylic acids
23

) is evident in the analysis described above. 

In order to enable the detection of these compounds even at 

low levels, we resorted to their derivatization with the probe 1-

pyrenebutyric hydrazide (PBH, see Figure 3A and Figure S12 

for adduct structures)
48,49

, followed by analysis by HPLC-

MS/MS (Figure 3B, see also SI for additional details). Addi-

tion of this probe to photooxidized liposomes revealed the 

formation of phospholipid aldehydes but not of carboxylic 

acid derivatives.  Truncated phospholipid aldehydes with 

different chain lengths were observed (m/z 920.5546, 

934.5695 and 946.5700, corresponding to 8-, 9- and 10-carbon 

chains, respectively) (Figure 3A) and, more importantly, only 

in those samples that also suffered membrane permeabiliza-

tion. Liposomes treated with DO15 were permeabilized within 

minutes upon irradiation, showing a significant increase in the 

amounts of aldehydes at this timescale (~ 2 M, Figure 3C). In 

turn, during the initial steps of irradiation, MB did not perme-

abilize membranes and did not form aldehydes. Prolonged 

irradiation (120 min) of MB ultimately led to membrane per-

meabilization to the same extent as DO15 (cp. 3 min, when 

both samples show CF emission enhancement of ~1.4, see 

Figure 1B).  Remarkably, aldehydes were detected in these 

samples at concentrations similar to those found in samples 

irradiated for a 40-fold shorter period with DO15 (Figure 3D, 

p-value = 0.119), supporting the view that aldehydes are the 

products that cause membrane permeabilization. These results 

are the first definitively associating membrane permeabiliza-

tion with in situ aldehyde accumulation. 

 



 

 

Figure 2. Oxidized lipids detected during photooxidation of POPC liposomes. (A) Structures and detected m/z for the [M+H]
+
 ions 

for POPC and its major oxidation products: hydroperoxides (LOOH), alcohols (LOH) and ketones (LO), represented here by the 9-

Z isomers. (B) Multiple reaction monitoring (MRM) chromatograms for each of the transitions [M+H]
+
 m/z 184.0, in ESI+ mode 

DPPC was employed as internal standard. (C) Concentration of oxidized lipids in M (left) and in percentage of the initial POPC 

concentration (right) as a function of irradiation time (631 nm, 72 ± 1 W m
-2

). [PS] = 15 M. *denotes p-value < 0.05. 

 

 

Scheme 1. Chemical pathway to photoinduced membrane permeabilization. The map distinguishes between contact-

independent and contact-dependent processes, which rely on 
1
O2 or on direct reactions between PSs and lipids, respectively. 

 

PS(S0), PS(T1): PS ground and triplet excited states; 3O2,
1O2: ground and singlet-excited states of oxygen; R●: generic radical species; 

LH: non-oxidized lipid; L●, LOO●, LO●: lipid carbon-centered, peroxyl and alkoxyl radicals; LOOH, LOH, LO, LO*: lipid hydroperoxide, 

alcohol, ketone and excited state ketone. A snapshot of a simulated aldehyde membrane, showing pore opening, is also provided (see SI for 

details).  

 



 

 

Figure 3. Quantification of POPC-derived aldehydes. (A) Structures of POPC-derived phospholipid aldehydes (ALDOPC-8, ALDOPC and 

ALDOPC9) and detected m/z for the respective [M+H]+ ions. Aldehydes were detected as PBH adducts, as represented above. (B) Parallel 

reaction monitoring (PRM) chromatograms for each of the transitions [M+H]+ m/z 184.0733, in ESI+ mode (POVPC: 1-palmitoyl-2-(5'-

oxo-valeroyl)-sn-glycero-3-phosphocholine, employed as internal standard). Samples consisted of POPC liposomes irradiated (631 nm, 72 

± 1 W m-2) for 20 min with DO15. (C) Total aldehyde concentration at 0 and 20 min of irradiation without (control) or with PSs. (D) Com-

parative quantification of total aldehydes at 0 min and at 120 min of irradiation with MB or at 3 min of irradiation with DO15. [PS] = 15 

M. [POPC] was 2.5-fold lower in (C), being the same as for Figure 2, see SI for details. *denotes p-value < 0.05. 

 

The effects of photooxidized lipids. Several factors affect 

the permeability of solutes through membranes. Excluding the 

condition associated with the generation of large pores in 

membranes, they can all be translated into transient changes of 

the potential energy in the course of solute permeation
50

. Any 

membrane alteration that causes a decrease in the pathway that 

solutes need to cross or an increase the diffusion rate of so-

lutes within the membrane will favor permeation. For exam-

ple, membranes made of shorter chain lipids, are thinner with 

shallower energy barriers, resulting in higher permeability
51,52

. 

Obviously, decrease in lipid packing or creation of transient 

diffusion pathways for solutes will increase permeability
53,54

. 

But not all physical changes will increase permeability. Inter-

estingly, this seems to be the case of stretching of lipid mem-

branes, with the lack of increase in permeability being ex-

plained by the fact that the main barrier to permeation is locat-

ed in middle of the membrane and is insensitive to stretch-

ing
52

. 

In order to evaluate the biophysical effects of each of the 

four classes of detected oxidation products, we resorted to 

molecular dynamics simulations. Table 1 shows the calculated 

free energy barriers of water permeation through pristine 

POPC and all the simulated fully oxidized bilayers, thus 

providing a quantitative comparison of water permeability for 

the different classes of oxidized lipids. Membranes made of 

hydroperoxides, alcohols and ketones posed similar permea-

tion barriers as POPC (~30 kJ mol
-1

). Strikingly, truncated 

lipid aldehydes, however led to a more than 2-fold decrease in 

the energy barrier, due to the formation of transmembrane 

pores (Figure 4E). This result is clearly seen in Figure 4D-E, 

where aldehyde groups span the whole membrane (D), while 

water molecules permeate across the bilayer (E). Therefore, 

our results confirmed the hypothesis that aldehydes cause 

membrane permeabilization. Also, theorical work performed 

by others have shown that aldehydes (more than 15%, mol%) 

cause enough disorganization in the membranes to allow for-

mation of pores
32,55

. Once these pores are formed, membrane 

stability is lost. Even in the presence of low amounts of alde-

hydes, simulations predict the formation of transient water 

pores that somehow increase water permeation
55

. Another 

important piece of information coming from the simulations is 

that these transient water pores, which are induced by alde-

hydes in low concentration, are of single water molecules, i.e., 

somehow aldehydes simply facilitate water to find new ways 

across the membranes. The fact that aldehydes increase mem-

brane permeability in low concentrations was also shown by 

assembling membranes with commercially available alde-

hydes. For instance, when Ytzhak and Ehrenberg studied the 

permeabilization effects of ALDOPC and a shorter chain 

phospholipid aldehyde in egg lecithin liposomes, they ob-

served dissipation of an ionic gradient by employing as little 

as 2% of any of these aldehyde species, with higher concentra-

tions amplifying this effect
38

. By working with GUVs contain-

ing cholesterol saturated and unsaturated lipids, Runas et al. 

observed that increasing the amount of ALDOPC from 0 to 

2.5% enhanced in one order of magnitude membrane permea-

bility to a fluorescent, short-chain poly(ethylene glycol) mole-

cule (PEG12-NBD)
36

. 

Truncated aldehyde phospholipids have two molecular 

characteristics that make it catalyze a type of shuttle system 

for water molecules. In the remaining alkyl chain there is 

enough alkyl groups to work as a membrane anchor, while in 

the broken chain, which bears the aldehyde group, there is a 

certain level of hydrogen bonding and flexibility that allows 

the aldehyde to bind water molecules and to freely move in 

and out of the membrane surface. In this model, if there are 



 

two aldehydes molecules in different sides of the membranes, 

there will be a chance for the water to be shuttled from one 

side to the other of the membrane. This model is endorsed by 

molecular dynamics simulations
32,55

 and is compatible with the 

experimental data from this work as well as from the litera-

ture
36–38

, showing that very low concentration of aldehydes is 

already enough to cause membrane permeabilization (Figure 

3D). 

 

Table 1. Gibbs free energy barrier for water permeation 

from simulated single-component membranes. 

 POPC LOOH LOH LO ALDOPC 

G / kJ 

mol-1 

31 ± 3 30 ± 5 30.0 ± 

0.3 

> 34 12 ± 4 

LOOH, LOH, LO, ALDOPC: POPC-derived hydroperoxide, 

alcohol, ketone and aldehyde, respectively. See SI for calculation 

details. 

 

 

Figure 4. Snapshots from molecular dynamics simulations of 

oxidized lipid membranes. Single-component membranes were 

composed by POPC-derived (A) hydroperoxides, (B) alcohols, 

(C) ketones or (D-E) aldehydes, with the oxidized groups high-

lighted in red (van der Waals spheres) for A-D. Water molecules 

were omitted for simplicity, except for (E), in which lipids were 

omitted instead. 

The mechanism of membrane permeation by aldehyde-

bearing truncated phospholipids does not seem to apply to 

other phospholipids bearing shorter alkyl chains. For example, 

truncated lipids bearing a carboxylic acid contributes to the 

increase in the disorder of the hydrophobic region of the bi-

layer, but not enough to lead to pore formation, in a marked 

contrast to aldehydes.
54

 Besides, our experiments did not show 

the presence of truncated lipids bearing carboxylic acids in the 

initial steps of photooxidation, in a timeframe that membranes 

are already leaking in the presence of aldehyde-bearing trun-

cated phospholipids. Another interesting result was obtained 

by Ytzhak and Ehrenberg, who observed that incorporation of 

L--lysophosphatidylcholine to liposomes did not cause dissi-

pation of ionic gradients in concentrations in which phospho-

lipid aldehydes did
38

. 

Besides endorsing the permeabilizing effects of 

aldehydes
22,32–34,55

, our simulations confirmed that hydroperox-

ides form stable membranes in which no pores are observed 

(Figure 4A, Figure S15A and 
35

). Remarkably, alcohols and 

ketones led to the same result as for hydroperoxides, even 

though bilayers displayed different membrane thickness, area 

occupied per lipid and spatial distribution of oxygenated 

groups (Figure 4B-C, Figure S15B-C and Table S4). The main 

consequences of forming lipid hydroperoxides is that mem-

branes tend to expand, due to a significant increase in the area 

per lipid as well as a significant decrease in the stretching 

modulus
22

. However, membranes made of hydroperoxides are 

stable and sustain chemical (e.g., sugar) gradients
22

. Interest-

ingly, Gauthier and Joos showed that the overall water mem-

brane permeability remains nearly constant within relevant 

ranges of area per lipids. The data presented in this manuscript 

is also in agreement with this effect. We do not rule out that 

phospholipid hydroperoxides, alcohols and ketones may still 

contribute to membrane permeabilization via specific interac-

tions between different oxidation products. However, the 

existence of such a synergistic effect, as well as the role of 

lipid lateral organization, remains to be investigated.  

While hydroperoxides, alcohols and ketones were formed in 

larger concentration than aldehydes (1.6 ± 0.2 M after 6 min 

of irradiation with DO15, i.e. ~6-fold smaller than that of 

alcohols or ketones), only the latter significantly favored water 

permeation and led to pore opening. Through quantification of 

multiple lipid oxidation products in different stages of the 

membrane permeabilization process, we demonstrated that 

membrane permeabilization correlates with phospholipid 

aldehyde detection: this is especially evident when we com-

pare samples irradiated with MB for shorter times, when no 

permeabilization is seen and no aldehydes are detected, versus 

samples irradiated for longer times, when both permeabiliza-

tion and aldehyde levels are significant. DO15 shows   much 

faster permeabilization kinetics and, indeed, aldehydes can be 

detected much earlier than for MB. We are thus confident that 

these theoretical and experimental evidences clearly converge 

to prove the crucial role of aldehydes in photoinduced mem-

brane permeabilization.  

 

Sources of photooxidized lipids. Understanding the path-

ways (Scheme 2) behind lipid photooxidation is mandatory in 

order to control membrane permeabilization, which in biologi-

cal scenario ultimately determines cell faith between pro-

gramed cell death pathways or accidental cell death
8,9

. Photo-

sensitized oxidations encompass both direct reactions between 

PSs and substrates (e.g., lipids) and reactions depending on a 

mediating species, most often 
1
O2. As previously discussed, 

the different efficiencies of DO15 and MB while in a condi-

tion where both deliver similar amounts of 
1
O2 to membranes 

suggests a key role of contact-dependent steps. This is en-

dorsed by the detection of alcohol and ketones, which not only 

are not expected from 
1
O2 chemistry alone but were also 

formed in proportions consistent with peroxyl radicals being 

their precursor (Scheme 2 – step 4). Further support to the key 

role of radical-mediated pathways is provided by the detection 

of phospholipid aldehydes, as further discussed below. 

The initiation and progress of radical-mediated lipid oxida-

tion in the absence of metals relies on contact-dependent reac-

tions of the triplet excited state of PSs, which are prone to 

abstract hydrogens or donate electrons
7
. Possible targets of 



 

triplets are double bonds (H-abstraction) and/or hydroperox-

ides (electron donation), which can be pre-formed through the 

ene reaction
56

 (Scheme 2 – steps 2, 3). Consistent with the 

direct involvement of the PS in these processes, Figure 1B 

(inset, right axis) shows that membrane permeabilization is 

invariably coupled to PS bleaching, as characterized by a 

decrease on the main absorption band of the PSs (630-680 

nm). Indeed, spectral changes observed during irradiation 

confirmed that DO15 extensively bleaches during membrane 

permeabilization experiments (Figure 5A-C and Figure S16). 

Not only that, the photobleaching rates of DO15 paralleled the 

rate of absorption increase at ca. 225 nm, which corresponds 

to the formation of lipids bearing ,-unsaturated ketones
57

 

(Figure 5D, see also Figure S9) and proving the fundamental 

role of contact-dependent reactions for the progress of lipid 

peroxidation. Compared with a water control, both the photo-

bleaching rate of DO15 (Figure 5B-C) and the consecutive 

formation of oxidized lipids (Figure 5D) increased in the pres-

ence of lipids bearing allylic hydrogens (POPC and 1,2-

dioleoyl-sn-glycero-3-phosphocholine, DOPC) or hydroperox-

ides, but not in the presence of saturated lipids (1,2-

dipalmitoyl-sn-glycero-3-phosphocholine, DPPC). Even 

though photobleaching rates are very similar in pure POPC 

and DOPC membranes, experiments carried out in membranes 

containing a saturated lipid and smaller percentages of POPC 

or DOPC showed that the photobleaching rates indeed depend 

on the concentration of double bonds (Figure S17). Yet, in 

pure unsaturated lipid bilayers the rates converge due to a 

saturation effect of double bonds concentration. The increase 

in DO15 photobleaching by unsaturated lipids demonstrates 

the significance of the abstraction of allylic hydrogens by the 

PS. These reactions yield lipid carbon-centered radicals, which 

rapidly react with oxygen and form peroxyl radicals
58

, con-

tributing to the buildup of the peroxyl radical pool from which 

alcohols and ketones emerge. Importantly, the photobleaching 

rates of MB were shown to be poorly dependent on liposome 

compositions or even on their presence (Figure 5B), in accord-

ance to the higher hydrophilicity and lower membrane perme-

abilization efficiency of MB. 

 

 

Figure 5. Spectral changes observed upon irradiation of PSs in the 

presence of liposomes. (A) Absorption spectra of DO15 (15 M) 

in the presence of POPC liposomes, at different irradiation times 

(650 nm, 35 mW, 5 min intervals). (B) Change in the absorbance 

in the main absorption band of DO15 (graph A, downward arrow) 

during irradiation in absence or in the presence of DPPC, POPC 

hydroperoxides (LOOH), POPC and DOPC liposomes. Data is 

also provided for MB (15 M) in water, liposomes of POPC and 

LOOH. (C) Photobleaching rate constants for DO15, obtained 

from (B). (D) Change in the absorbance in the ketone absorption 

band (graph A, upward arrow) Of liposomes irradiated in the 

presence of DO15, in the same conditions as in (B). *denotes p-

value < 0.05. 

 

Previous reports showed that hydroperoxides quench the 

triplet excited state of MB, while also suggesting that this 

reaction forms alkoxyl radicals
59,60

. The fact that the photolysis 

of DO15 in the presence of POPC hydroperoxide liposomes 

indeed showed an increase in dye bleaching rates if compared 

with photolysis in water (Figure 5C and Figure S16) endorsed 

the hypothesis that DO15 can also directly produce peroxyl 

and/or alkoxyl radicals by reacting with hydroperoxides 

(Scheme 2 – step 3). We highlight that not all -OOH groups of 

hydroperoxide float on the membrane/water interface and 

some may localize closer to the original position of lipid un-

saturation (Figure 4A); therefore, the distribution of DO15 in 

the membrane would likely overlap with the distribution of -

OOH groups. The hypothesis that DO15 generates oxygenated 

lipid radicals was confirmed by irradiating liposomes contain-

ing DO15 and the fluorogenic probe H2B-PMHC, which is an 

α-tocopherol analogue whose fluorescence is enhanced upon 

reaction with peroxyl or alkoxyl radicals
61

 (Figure S18). Not 

only significant enhancement of H2B-PMHC’s fluorescence 

occurred in the presence of oxygen (Figure 6A), but also en-

hancement rates were higher in water than in deuterium oxide 

(Figure 6B). While we hypothesize that the reasons behind the 

smaller rates in deuterium oxide might be related to isotopic 

effects slowing down contact-dependent reactions, we high-

light that these results follow the opposite order to what ex-

pected for any 
1
O2-dependent process and endorse that oxy-

genated lipid radicals generated through contact-dependent 

reactions are involved in lipid membrane photooxidation. 

 

 

Figure 6. Detection of lipid oxygenated radicals by the fluorogen-

ic probe H2B-PMHC. (A) Activation kinetics and (B) activation 

rate constants for H2B-PMHC in POPC liposomes. Samples were 

irradiated (634 nm, 1.85 mW cm-2) with DO15 (0.24 M) in water 

(argon purged or air-equilibrated) or deuterium oxide-based PBS. 

*denotes p-value < 0.05. 

 

We finally consider the main reaction that leads to for-

mation of lipid aldehydes in our system, which can be pro-

duced either through radical-mediated reactions or through 

hydroperoxide decomposition, i.e. presumably directly from 
1
O2 products and without the need of contact-dependent pro-

cesses. In the case of monounsaturated lipids, these processes 

correspond, respectively, to alkoxyl radical -scission 



 

(Scheme 2 – step 5 and Scheme 3B) and hydroperoxide Hock 

cleavage (Scheme 3A)
62,63

.  

 

 

 

Scheme 3. Possible reactions leading to phospholipid alde-

hydes and membrane permeabilization. (A) Hydroperox-

ide Hock cleavage and (B) alkoxyl radical -scission, for 

related hydroperoxide and alkoxyl radical structures. 

 

 

Hock cleavage, though never demonstrated for monounsatu-

rated phospholipids, is commonly proposed as a source of 

aldehydes directly from other classes of hydroperoxides
23,27,64

. 

Still, the conditions in which Hock cleavage was shown to 

occur were invariably either in organic solvents or in thin 

films of lipids exposed to an undefined atmosphere, usually 

with an unknown amount of acid added to the sample. Conse-

quently, the role of Hock cleavage in biologically-relevant 

conditions remains highly controversial. It is also important to 

mention that the work performed by Morita’s group during 

several decades has never shown any evidence of Hock-

cleavage based autooxidation of lipid hydroperoxides
65–68

.  

Nonetheless and despite the lack of convincing evidences, this 

mechanism is still frequently mentioned to explain peroxida-

tion progression in membranes as a subsequent step of the 

hydroperoxide formation. Our data indeed shows that hydrop-

eroxides will rest quietly in lipid membranes, even in condi-

tions that could, in principle, catalyze Hock cleavage, but that 

actually do not. We observed that giant unilamellar vesicles 

(GUVs) made of POPC hydroperoxides remained impermea-

ble to sugars independently of pH, similarly to GUVs made of 

pristine POPC (Figure S19). The fact that membranes kept 

their impermeability even in pH 3.5 discards the acid cata-

lyzed Hock cleavage as a pathway for phospholipid aldehyde 

formation under the studied conditions. Not even membranes 

made of lipids having a polyunsaturated chain, i.e., PAPC and 

its hydroperoxides, show any relevant permeabilization by 

lowering down the pH or by adding a Lewis-acid (Fe(III) salt). 

Note also that this GUV assay is sensitive to measure mem-

brane permeabilization, since PAPC GUVs burst within 

minutes of exposure to Fe(II), showing that the experimental 

system responds positively for radical type (Fenton reaction) 

oxidative damage in the membrane (Figure S19). Moreover, 

Hock cleavage from POPC hydroperoxides would only yield 

aldehydes bearing saturated carbon chains, while one of the 

aldehydes species detected by us has a 10-carbon unsaturated 

chain (Figure 3A). The formation of this product together with 

the other two detected species (with 8 and 9-carbon saturated 

chains) is consistent with alkoxyl radical -scission (Scheme 2 

– step 5, see also SI for details), a pathway relying on radical 

chemistry and consistent with the production of oxygenated 

radicals by DO15 and with their role on lipid peroxidation 

propagation
62,69

 Therefore, our experiments provides further 

evidence that lipid hydroperoxides do not suffer direct break-

age by Hock cleavage, supporting the need for direct-contact 

reactions that lead to the formation of radicals that through 

alkoxyl radical -scission ultimately yield truncated alde-

hydes. These, in turn, start membrane permeabilization, as 

summarized in Schemes 2 and 3. The permeabilization exper-

iment performed with PAPC liposomes (Figure S21), as well 

as previously-reported permeabilization experiments carried 

out in soy-lecithin liposomes (containing 39% of PUFAs)
39

 

provides evidence that contact-dependent pathways also mat-

ter for membranes made of PUFA lipids. Since the timeframe 

of the photoinduced processes is a lot shorter than that of the 

autooxidations processes, the contact-dependent reactions, 

which govern photoinduced permeabilization in membranes 

bearing only MUFAs also seem to be governing permeabiliza-

tion of membranes bearing PUFAs. Thus, these results suggest 

that the findings reported herein and the proposed chemical 

pathway are valid for different lipid compositions. 

The original definition of type I and type II photooxidations 

by Foote has as a hallmark the contrast between processes 

depending on direct contact between PSs and substrates or 

alternatively relying on diffusive, reactive species
7,70

. Hence, 

our data explains the key role of contact-dependent pathways 

for improving photodynamic efficiency, and suggests that the 

efficacy of PSs can be considerably improved by aiming at 

targets for direct reactions and expanding their action mecha-

nism beyond 
1
O2 generation

71
. Interestingly, natural PSs such 

as flavin and pterins also seems to oxidize biological sub-

strates preferentially through contact-dependent reac-

tions
43,72,73

.  We envisage several implications of this 

knowledge. For example, since membrane permeabilization 

depends on redox reactions, which are likely to cause photo-

sensitizer bleaching, finding ways to replenish photosensitiz-

ers may be a yet to be explored route to allow the design of 

better photosensitizing agents. Likewise, in order to either 

increase or avoid damages induced by photosensitized oxida-

tions one can respectively try to increase or avoid accumula-

tion of lipid aldehydes. We are confident that our work will 

stimulate studies in more complex lipid compositions, as well 

as, studies aiming to better understand cell death pathways that 

depend on lipid oxidation, such as ferroptosis
74

. Since mem-

brane damage will depend on the molecular contact between 

the photosensitizer and the lipid, and not so much on diffusive 

species, one may start to develop efficient photoinduced orga-

nelle-depletion methods. 

 

CONCLUSION 

The involvement of lipid carbon-centered, alkoxyl and per-

oxyl radicals in the progression of lipid peroxidation is a well-

known fact
21

. However, the specific details of how these spe-

cies are actually formed during photosensitized oxidations and 

lead to membrane permeabilization has remained elusive. By 

comparing two PSs with similar intrinsic photophysical and 

photochemical properties but differing in terms of membrane 

permeabilization efficiencies, we showed that membrane 

permeabilization is associated with aldehyde production, 

which can only occur when there are direct reactions between 

the triplet excited state of the PS and the major targets in the 

lipid membrane, i.e. lipid unsaturations and -OOH groups 

formed after the initial ene reaction with 
1
O2. These results, as 

well as the major reactions operating under membrane pho-

tooxidation, are summarized in Scheme 2. The role of contact-



 

dependent processes in biological photooxidations is often 

considered secondary to 
1
O2-mediated oxidations, and conse-

quently 
1
O2 production is usually the main parameter consid-

ered for the development of new PSs. However, our results 

demonstrate that for a PS to fully compromise membrane 

function requires its sacrifice through contact-dependent reac-

tions. Therefore, activation/suppression of PS replenishment 

could be explored as an effective tool to maximize or counter 

the effects of photosensitized oxidations. We are confident 

that the roadmap presented herein will provide mechanistic 

guidelines for further developments in photomedicine and 

photoprotection. 
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