707 research outputs found

    New mutations at the imprinted Gnas cluster show gene dosage effects of Gsα in postnatal growth and implicate XLαs in bone and fat metabolism, but not in suckling

    Get PDF
    The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLαs, XLN1, and ALEX or a double dose of maternally expressed Gsα to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of Gsα, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of Gsα and loss of expression of XLαs and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLαs, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLαs. This is, to our knowledge, the first report describing a role for XLαs in bone metabolism. We propose that XLαs is involved in the regulation of bone and adipocyte metabolism

    Identification of a new pebp2 alpha A2 isoform from zebrafish runx2 capable of inducing osteocalcin gene expression in vitro

    Get PDF
    Introduction: RUNX2 (also known as CBFA1/Osf2/AML3/PEBP2 alpha A) is a transcription factor essential for bone formation in mammals, as well as for osteoblast and chondrocyte differentiation, through regulation of expression of several bone- and cartilage-related genes. Since its discovery, Runx2 has been the subject of intense studies, mainly focused in unveiling regulatory targets of this transcription factor in high vertebrates. However, no single study has been published addressing the role of Runx2 in bone metabolism of low vertebrates. While analyzing the zebrafish (Danio rerio) runx2 gene, we identified the presence of two orthologs of RUNX2, which we named runx2a and runx2b and cloned a pebp2 alpha A-like transcript of the runx2b gene, which we named pebp2 alpha A2. Materials and Methods: Zebrafish runx2b gene and cDNA were isolated by RT-PCR and sequence data mining. The 3D structure of runx2b runt domain was modeled using mouse Runx1 runt as template. The regulatory effect of pebp2 alpha A2 on osteocalcin expression was analyzed by transient co-transfection experiments using a luciferase reporter gene. Phylogenetic analysis of available Runx sequences was performed with TREE-PUZZLE 5.2. and MrBayes. Results and Conclusions: We showed that the runx2b gene structure is highly conserved between mammals and fish. Zebrafish runx2b has two promoter regions separated by a large intron. Sequence analysis suggested that the runx2b gene encodes three distinct isoforms, by a combination of alternative splicing and differential promoter activation, as described for the human gene. We have cloned a pebp2 alpha A-like transcript of the runx2b gene, which we named pebp2 alpha A2, and showed its high degree of sequence similarity with the mammalian pebp2 alpha A. The cloned zebrafish osteocalcin promoter was found to contain three putative runx2-binding elements, and one of them, located at -221 from the ATG, was capable of mediating pebp2 alpha A2 transactivation. In addition, cross-species transactivation was also confirmed because the mouse Cbfa1 was able to induce the zebrafish osteocalcin promoter, whereas the zebrafish pebp2 alpha A2 activated the murine osteocalcin promoter. These results are consistent with the high degree of evolutionary conservation of these proteins. The 3D structure of the runx2b runt domain was modeled based on the runt domain of mouse Runx1. Results show a high degree of similarity in the 3D configuration of the DNA binding regions from both domains, with significant differences only observed in non-DNA binding regions or in DNA-binding regions known to accommodate considerable structure flexibility. Phylogenetic analysis was used to clarify the relationship between the isoforms of each of the two zebrafish Runx2 orthologs and other Runx proteins. Both zebrafish runx2 genes clustered with other Runx2 sequences. The duplication event seemed, however, to be so old that, whereas Runx2b clearly clusters with the other fish sequences, it is unclear whether Runx2a clusters with Runx2 from higher vertebrates or from other fish.info:eu-repo/semantics/publishedVersio

    A Novel Role for GADD45\u3ci\u3eβ\u3c/i\u3e as a Mediator of \u3ci\u3eMMP-13\u3c/i\u3e Gene Expression during Chondrocyte Terminal Differentiation

    Get PDF
    The growth arrest and DNA damage-inducible 45β (GADD45β) gene product has been implicated in the stress response, cell cycle arrest, and apoptosis. Here we demonstrated the unexpected expression of GADD45β in the embryonic growth plate and uncovered its novel role as an essential mediator of matrix metalloproteinase-13 (MMP-13) expression during terminal chondrocyte differentiation. We identified GADD45β as a prominent early response gene induced by bone morphogenetic protein-2 (BMP-2) through a Smad1/Runx2-dependent pathway. Because this pathway is involved in skeletal development, we examined mouse embryonic growth plates, and we observed expression of Gadd45β mRNA coincident with Runx2 protein in prehypertrophic chondrocytes, whereas GADD45β protein was localized prominently in the nucleus in late stage hypertrophic chondrocytes where Mmp-13 mRNA was expressed. In Gadd45β−/− mouse embryos, defective mineralization and decreased bone growth accompanied deficient Mmp-13 and Col10a1 gene expression in the hypertrophic zone. Transduction of small interferin

    Addressing the needs of children with disabilities experiencing disaster or terrorism

    Get PDF
    Purpose of review: This paper reviews the empirical literature on psychosocial factors relating to children with disabilities in the context of disaster or terrorism. Recent findings: Research indicates individuals with disabilities experience increased exposure to hazards due to existing social disparities and barriers associated with disability status. However, studies on the psychological effects of disaster/terrorism on children with preexisting disabilities are exceedingly few and empirical evidence of the effectiveness of trauma-focused therapies for this population is limited. Secondary adversities, including social stigma and health concerns, also compromise the recovery of these children post-disaster/terrorism. Schools and teachers appear to be particularly important in the recovery of children with disabilities to disaster. Disasters, terrorism, and war all contribute to the incidence of disability, as well as disproportionately affect children with preexisting disabilities. Summary: Disaster preparedness interventions and societal changes are needed to decrease the disproportionate environmental and social vulnerability of children with disabilities to disaster and terrorism

    Cross-talk between 1,25-dihydroxyvitamin D-3 and Transforming Growth Factor-beta Signaling requires Binding of VDR and Smad3 Proteins to their cognate DNA Recognition Elements

    Get PDF
    1,25-Dihydroxyvitamin D-3 (vitamin D) and transforming growth factor-beta (TGF-beta) regulate diverse biological processes including cell proliferation and differentiation through modulation of the expression of target genes. Members of the Smad family of proteins function as effecters of TGF-beta signaling pathways whereas the vitamin D receptor (VDR) confers vitamin D signaling. We investigated the molecular mechanisms by which TGF-beta and vitamin D signaling pathways interact in the regulation of the human osteocalcin promoter. Synergistic activation of the osteocalcin gene promoter by TGF-beta and vitamin D was observed in transient transfection experiments. However, in contrast to a previous report by Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Rawabata, M., Miyazono, K., and Kato, S. (1999) Science, 283, 1317-1321, synergistic activation was not detectable when the osteocalcin vitamin D response element (VDRE) alone was linked to a heterologous promoter. Inclusion of the Smad binding elements (SBEs) with the VDRE in the heterologous promoter restored synergistic activation. Furthermore, this synergy was dependent on the spacing between VDRE and SBEs. The Smad3-Smad4 heterodimer was found to bind in gel shift assay to two distinct DNA segments of the osteocalcin promoter: -1030 to -989 (SBE3) and -418 to -349 (SBE1). Deletion of SBE1, which is proximal to the VDRE, brit not the distal SBE3 in this promoter reporter abolished TGF-beta responsiveness and eliminated synergistic co-activation with vitamin D. Thus the molecular mechanism, whereby Smad3 and VDR mediate cross-talk between the TGF-beta acid vitamin D signaling pathways, requires both a VDRE and a SBE located in close proximity to the target promoter

    Adventage of mesenchymal stem cells (MSC) expansion directly from purified bone marrow CD105^+ and CD271^+ cells

    Get PDF
    Mesenchymal Stem Cells (MSC) are employed in gene and cellular therapies. Routinely MSC are isolated from bone marrow mononuclear cells (MNC) by plastic adherence. Here we compared new isolation strategies of bone marrow MSC including immunodepletion of hematopoietic cells and immunomagnetic isolation of CD105+ and CD271+ populations. Four fractions were obtained: MNC MSC, RosetteSep-isolated MSC, CD105+ and CD271+ sorted MSC. We evaluated i) number of CFU-F colonies, ii) cell phenotype, iii) in vitro differentiation of expanded cells and iv) expression of osteo/adipogenesis related genes. Results: Average number of day 9 CFU-F colonies was the highest for CD271 positive fraction. Real-Time PCR analysis revealed expression of RUNX2, PPARgamma and N-cadherin in isolated cells, particularly high in CD271+ cells. Expression of CD105, CD166, CD44, CD73 antigens was comparable for all expanded populations (over 90%). We observed various levels of hematopoietic contamination with the highest numbers of CD45+ cells in MNC-MSC fraction and the lowest in CD105+ and CD271+ fractions. Cells of all the fractions were CD34 antigen negative. Expanded CD105 and CD271 populations showed higher level of RUNX2, osteocalcin, PTHR, leptin, PPARgamma2 and aggrecan1 genes except for alpha1 collagen. After osteogenic differentiation CD105+ and CD271+ populations showed lower expression of RUNX, PPARgamma2 and also lower expression of osteocalcin and PTHR than MNC, with comparable alpha1-collagen expression. Chondrogenic and adipogenic gene expression was higher in MNC. More clonogenic CD105+ and particularly CD271+ cells, which seem to be the most homogenous fractions based on Real-Time PCR and immunostaining data, are better suited for MSC expansion

    GSK-3β Controls Osteogenesis through Regulating Runx2 Activity

    Get PDF
    Despite accumulated knowledge of various signalings regulating bone formation, the molecular network has not been clarified sufficiently to lead to clinical application. Here we show that heterozygous glycogen synthase kinase-3β (GSK-3β)-deficient mice displayed an increased bone formation due to an enhanced transcriptional activity of Runx2 by suppressing the inhibitory phosphorylation at a specific site. The cleidocranial dysplasia in heterozygous Runx2-deficient mice was significantly rescued by the genetic insufficiency of GSK-3β or the oral administration of lithium chloride, a selective inhibitor of GSK-3β. These results establish GSK-3β as a key attenuator of Runx2 activity in bone formation and as a potential molecular target for clinical treatment of bone catabolic disorders like cleidocranial dysplasia

    cAMP/PKA Regulates Osteogenesis, Adipogenesis and Ratio of RANKL/OPG mRNA Expression in Mesenchymal Stem Cells by Suppressing Leptin

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into adipocytes, osteoblasts and other cells. The reciprocal relationship between adipogenesis and osteogenesis was previously demonstrated; however, the mechanisms remain largely unknown. METHODS AND FINDINGS: We report that activation of PKA by 3-isobutyl-1 methyl xanthine (IBMX) and forskolin enhances adipogenesis, the gene expression of PPARgamma2 and LPL, and downregulates the gene expression of Runx2 and osteopontin, markers of osteogenesis. PKA activation also decreases the ratio of Receptor Activator of the NF-kappaB Ligand to Osteoprotegerin (RANKL/OPG) gene expression - the key factors of osteoclastogenesis. All these effects are mediated by the cAMP/PKA/CREB pathway by suppressing leptin, and may contribute to PKA stimulators-induced in vivo bone loss in developing zebrafish. CONCLUSIONS: Using MSCs, the center of a newly proposed bone metabolic unit, we identified cAMP/PKA signaling, one of the many signaling pathways that regulate bone homeostasis via controlling cyto-differentiation of MSCs and altering RANKL/OPG gene expression

    Hepatocyte Growth Factor Increases Osteopontin Expression in Human Osteoblasts through PI3K, Akt, c-Src, and AP-1 Signaling Pathway

    Get PDF
    BACKGROUND: Hepatocyte growth factor (HGF) has been demonstrated to stimulate osteoblast proliferation and participated bone remodeling. Osteopontin (OPN) is a secreted phosphoglycoprotein that belongs to the SIBLING family and is present during bone mineralization. However, the effects of HGF on OPN expression in human osteoblasts are large unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that HGF induced OPN expression in human osteoblasts dose-dependently. HGF-mediated OPN production was attenuated by c-Met inhibitor and siRNA. Pretreatment of osteoblasts with PI3K inhibitor (Ly294002), Akt inhibitor, c-Src inhibitor (PP2), or AP-1 inhibitor (curcumin) blocked the potentiating action of HGF. Stimulation of osteoblasts with HGF enhanced PI3K, Akt, and c-Src activation. In addition, incubation of cells with HGF also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the OPN promoter. HGF-mediated AP-1-luciferase activity and c-Jun binding to the AP-1 element was reduced by c-Met inhibitor, Ly294002, Akt inhibitor, and PP2. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the interaction between HGF and c-Met increases OPN expression in human osteoblasts via the PI3K, Akt, c-Src, c-Jun, and AP-1 signaling pathway
    • …
    corecore