208 research outputs found

    Rapport sur les activités du Comité français Du Cange (1988)

    Get PDF

    A. de Prisco. Il latino tardoantico e altomedievale

    Get PDF

    Revue des revues

    Get PDF

    The Partial Visibility Representation Extension Problem

    Full text link
    For a graph GG, a function ψ\psi is called a \emph{bar visibility representation} of GG when for each vertex v∈V(G)v \in V(G), ψ(v)\psi(v) is a horizontal line segment (\emph{bar}) and uv∈E(G)uv \in E(G) iff there is an unobstructed, vertical, ε\varepsilon-wide line of sight between ψ(u)\psi(u) and ψ(v)\psi(v). Graphs admitting such representations are well understood (via simple characterizations) and recognizable in linear time. For a directed graph GG, a bar visibility representation ψ\psi of GG, additionally, puts the bar ψ(u)\psi(u) strictly below the bar ψ(v)\psi(v) for each directed edge (u,v)(u,v) of GG. We study a generalization of the recognition problem where a function ψ′\psi' defined on a subset V′V' of V(G)V(G) is given and the question is whether there is a bar visibility representation ψ\psi of GG with ψ(v)=ψ′(v)\psi(v) = \psi'(v) for every v∈V′v \in V'. We show that for undirected graphs this problem together with closely related problems are \NP-complete, but for certain cases involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Sub-wavelength surface IR imaging of soft-condensed matter

    Full text link
    Outlined here is a technique for sub-wavelength infrared surface imaging performed using a phase matched optical parametric oscillator laser and an atomic force microscope as the detection mechanism. The technique uses a novel surface excitation illumination approach to perform simultaneously chemical mapping and AFM topography imaging with an image resolution of 200 nm. This method was demonstrated by imaging polystyrene micro-structures

    Radio spectral properties and jet duty cycle in the restarted radio galaxy 3C388

    Get PDF
    © ESO 2020. The original publication is available at https://doi.org/10.1051/0004-6361/202037457.Context. Restarted radio galaxies represent a unique tool for investigating the duty cycle of the jet activity in active galactic nuclei (AGN). The radio galaxy 3C388 has long been claimed to be a peculiar example of an AGN with multi-epoch activity because it shows a very sharp discontinuity in the GHz spectral index distribution of its lobes. Aims. We present here for the first time a spatially resolved study of the radio spectrum of 3C388 down to MHz frequencies aimed at investigating the radiative age of the source and constraining its duty cycle. Methods. We used new low-frequency observations at 144 MHz performed with the Low Frequency Array and at 350 MHz performed with the Very Large Array that we combined with archival data at higher frequencies (614, 1400, and 4850 MHz). Results. We find that the spectral indices in the lower frequency range, 144-614 MHz, have flatter values (αlow ∼0.55-1.14) than those observed in the higher frequency range, 1400-4850 MHz, (αhigh ∼0.75-1.57), but they follow the same distribution across the lobes, with a systematic steepening towards the edges. However, the spectral shape throughout the source is not uniform and often deviates from standard models. This suggests that mixing of different particle populations occurs, although it remains difficult to understand whether this is caused by observational limitations (insufficient spatial resolution and/or projection effects) or by the intrinsic presence of multiple particle populations, which might be related to the two different outbursts. Conclusions. Using single-injection radiative models, we compute that the total source age is ≲ 80 Myr and that the duty cycle is about ton/ttot ∼ 60%, which is enough to prevent the intracluster medium from cooling, according to X-ray estimates. While to date the radio spectral distribution of 3C388 remains a rare case among radio galaxies, multi-frequency surveys performed with new-generation instruments will soon allow us to investigate whether more sources with the same characteristics exist.Peer reviewe

    Evoked resonant neural activity in subthalamic local field potentials reflects basal ganglia network dynamics.

    Get PDF
    Evoked resonant neural activity (ERNA) is induced by subthalamic deep brain stimulation (DBS) and was recently suggested as a marker of lead placement and contact selection in Parkinson's disease. Yet, its underlying mechanisms and how it is modulated by stimulation parameters are unclear. Here, we recorded local field potentials from 27 Parkinson's disease patients, while leads were externalised to scrutinise the ERNA. First, we show that ERNA in the time series waveform and spectrogram likely represent the same activity, which was contested before. Second, our results show that the ERNA has fast and slow dynamics during stimulation, consistent with the synaptic failure hypothesis. Third, we show that ERNA parameters are modulated by different DBS frequencies, intensities, medication states and stimulation modes (continuous DBS vs. adaptive DBS). These results suggest the ERNA might prove useful as a predictor of the best DBS frequency and lowest effective intensity in addition to contact selection. Changes with levodopa and DBS mode suggest that the ERNA may indicate the state of the cortico-basal ganglia circuit making it a putative biomarker to track clinical state in adaptive DBS

    VizieR Online Data Catalog: 3C388 145, 392, 614, 1400 and 4850MHz images (Brienza+, 2020)

    Get PDF
    We used a recent dataset obtained on June 26th, 2019, as part of the LOFAR Two-metre Sky Survey (LoTSS, see Shimwell et al., 2019A&A...622A...1S, Cat. J/A+A/622/A1). We observed the source with the Very Large Array (VLA) in A configuration on July 28th 2015 using the P-band receiver centered at 350MHz. We reprocessed the data used by Roettiger et al. (1994ApJ...421L..23R) at 1400MHz and 4850MHz. The data consists of observations in B array at 1400MHz and in C array at 4850MHz. The target was observed for 7 hours at 1400MHz and for 5 hours at 4850MHz. The target was observed with the legacy Giant Metrewave Radio Telescope (GMRT) at 614MHz and 240MHz in dual frequency mode and data were published in Lal et al. (2008MNRAS.390.1105L). The observations were performed on July 29th and 30th, 2005. 3C388 was observed by Chandra on February 9th and 29th, 2004 with the ACIS-I detector (obs ID 4756 and 5295, respectively) and the data were published by Kraft et al. (2006ApJ...639..753K). (2 data files)

    Bioconjugation Strategies for Microtoroidal Optical Resonators

    Get PDF
    The development of label-free biosensors with high sensitivity and specificity is of significant interest for medical diagnostics and environmental monitoring, where rapid and real-time detection of antigens, bacteria, viruses, etc., is necessary. Optical resonant devices, which have very high sensitivity resulting from their low optical loss, are uniquely suited to sensing applications. However, previous research efforts in this area have focused on the development of the sensor itself. While device sensitivity is an important feature of a sensor, specificity is an equally, if not more, important performance parameter. Therefore, it is crucial to develop a covalent surface functionalization process, which also maintains the device’s sensing capabilities or optical qualities. Here, we demonstrate a facile method to impart specificity to optical microcavities, without adversely impacting their optical performance. In this approach, we selectively functionalize the surface of the silica microtoroids with biotin, using amine-terminated silane coupling agents as linkers. The surface chemistry of these devices is demonstrated using X-ray photoelectron spectroscopy, and fluorescent and optical microscopy. The quality factors of the surface functionalized devices are also characterized to determine the impact of the chemistry methods on the device sensitivity. The resulting devices show uniform surface coverage, with no microstructural damage. This work represents one of the first examples of non-physisorption-based bioconjugation of microtoroidal optical resonators
    • …
    corecore