15 research outputs found

    Estimating rates of carriage acquisition and clearance and competitive ability for pneumococcal serotypes in Kenya with a Markov transition model.

    No full text
    BACKGROUND: There are more than 90 serotypes of Streptococcus pneumoniae, with varying biologic and epidemiologic properties. Animal studies suggest that carriage induces an acquired immune response that reduces duration of colonization in a nonserotype-specific fashion. METHODS: We studied pneumococcal nasopharyngeal carriage longitudinally in Kenyan children 3-59 months of age, following up positive swabs at days 2, 4, 8, 16, and 32 and then monthly thereafter until 2 swabs were negative for the original serotype. As previously reported, 1868/2840 (66%) of children swabbed at baseline were positive. We estimated acquisition, clearance, and competition parameters for 27 serotypes using a Markov transition model. RESULTS: Point estimates of type-specific acquisition rates ranged from 0.00025/d (type 1) to 0.0031/d (type 19F). Point estimates of time to clearance (inverse of type-specific immune clearance rate) ranged from 28 days (type 20) to 124 days (type 6A). For the serotype most resistant to competition (type 19F), acquisition of other serotypes was 52% less likely (95% confidence interval = 37%-63%) than in an uncolonized host. Fitness components (carriage duration, acquisition rate, lack of susceptibility to competition) were positively correlated with each other and with baseline prevalence, and were associated with biologic properties previously shown to associate with serotype. Duration of carriage declined with age for most serotypes. CONCLUSIONS: Common S. pneumoniae serotypes appear superior in many dimensions of fitness. Differences in rate of immune clearance are attenuated as children age and become capable of more rapid clearance of the longest-lived serotypes. These findings provide information for comparison after introduction of pneumococcal conjugate vaccine

    Comparative epidemiologic characteristics of pertussis in 10 Central and Eastern European countries, 2000-2013

    Get PDF
    Publisher Copyright: © 2016 Heininger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.We undertook an epidemiological survey of the annual incidence of pertussis reported from 2000 to 2013 in ten Central and Eastern European countries to ascertain whether increased pertussis reports in some countries share common underlying drivers or whether there are specific features in each country. The annual incidence of pertussis in the participating countries was obtained from relevant government institutions and/or national surveillance systems. We reviewed the changes in the pertussis incidence rates in each country to explore differences and/or similarities between countries in relation to pertussis surveillance; case definitions for detection and confirmation of pertussis; incidence and number of cases of pertussis by year, overall and by age group; population by year, overall and by age group; pertussis immunization schedule and coverage, and switch from whole-cell pertussis vaccines (wP) to acellular pertussis vaccines (aP). There was heterogeneity in the reported annual incidence rates and trends observed across countries. Reported pertussis incidence rates varied considerably, ranging from 0.01 to 96 per 100,000 population, with the highest rates generally reported in Estonia and the lowest in Hungary and Serbia. The greatest burden appears for the most part in infants (<1 year) in Bulgaria, Hungary, Latvia, Romania, and Serbia, but not in the other participating countries where the burden may have shifted to older children, though surveillance of adults may be inappropriate. There was no consistent pattern associated with the switch from wP to aP vaccines on reported pertussis incidence rates. The heterogeneity in reported data may be related to a number of factors including surveillance system characteristics or capabilities, different case definitions, type of pertussis confirmation tests used, public awareness of the disease, as well as real differences in the magnitude of the disease, or a combination of these factors. Our study highlights the need to standardize pertussis detection and confirmation in surveillance programs across Europe, complemented with carefully-designed seroprevalence studies using the same protocols and methodologies.publishersversionPeer reviewe

    Data from: Avoidable errors in the modeling of outbreaks of emerging pathogens, with special reference to Ebola

    No full text
    As an emergent infectious disease outbreak unfolds, public health response is reliant on information on key epidemiological quantities, such as transmission potential and serial interval. Increasingly, transmission models fit to incidence data are used to estimate these parameters and guide policy. Some widely used modelling practices lead to potentially large errors in parameter estimates and, consequently, errors in model-based forecasts. Even more worryingly, in such situations, confidence in parameter estimates and forecasts can itself be far overestimated, leading to the potential for large errors that mask their own presence. Fortunately, straightforward and computationally inexpensive alternatives exist that avoid these problems. Here, we first use a simulation study to demonstrate potential pitfalls of the standard practice of fitting deterministic models to cumulative incidence data. Next, we demonstrate an alternative based on stochastic models fit to raw data from an early phase of 2014 West Africa Ebola virus disease outbreak. We show not only that bias is thereby reduced, but that uncertainty in estimates and forecasts is better quantified and that, critically, lack of model fit is more readily diagnosed. We conclude with a short list of principles to guide the modelling response to future infectious disease outbreaks

    Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in <i>Acinetobacter baumannii</i> ATCC 17978

    Get PDF
    <div><p>Many strains of <i>Acinetobacter baumannii</i> have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of <i>A</i>. <i>baumannii</i> ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in <i>A</i>. <i>baumannii</i> ATCC 17978.</p></div
    corecore