258 research outputs found

    Chemoselective surface immbolization of proteins through a cleavable peptide

    Get PDF
    Surface immobilization of biomolecules is a fundamental step in several experimental techniques such as surface plasmon resonance analysis and microarrays. Oxime ligation allows reaching chemoselective protein immobilization with the retention of native-like conformation by proteins. Beside the need for chemoselective ligation of molecules to surface/particle, equally important is the controlled release of the immobilized molecules, even after a specific binding event. For this purpose, we have designed and assessed in an SPR experiment a peptide linker able to (i) anchor a given protein (enzymes, receptors, or antibodies) to a surface in a precise orientation and (ii) release the immobilized protein after selective enzymatic cleavage. These results open up the possibility to anchor to a surface a protein probe leaving bioactive sites free for interaction with substrates, ligands, antigens, or drugs and successively remove the probe-ligand complex by enzymatic cleavage. This peptide linker can be considered both an improvement of SPR analysis for macromolecular interaction and a novel strategy for drug delivery and biomaterial developments

    Anti-HIV-1 Activity of CD4 Synthetic Oligopeptides Representative of the Putative gp120 Binding Site

    Get PDF
    Two CD4 oligopeptides, corresponding to residues (37–53) and (37–55) of the V1 domain of CD4, which recent structural studies propose as the most likely binding site of HIV-1 gp120, have been chemically synthesized by solid-phase techniques, modified by the addition of two side-chain protected cysteines at both termini and purified by HPLC. Their ability to inhibit the infectivity of human immunodeficiency virus type 1 (HIV-1) (HTLV-IIIB, RF and GB8 strains) in different cell lines was monitored by the production of progeny virus, p24 and reverse transcriptase activity in the culture supernatants and by electron microscopy. The results indicated that the peptides inhibited HIV-1 infectivity in a dose-dependent fashion without any detectable cytotoxicity

    Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition

    Get PDF
    The addition of Mn in bioceramic formulation is gaining interest in the field of bone implants. Mn activates human osteoblast (h-osteoblast) integrins, enhancing cell proliferation with a dose-dependent effect, whereas Mn-enriched glasses induce inhibition of Gram-negative or Gram-positive bacteria and fungi. In an effort to further optimize Mn-containing scaffolds' beneficial interaction with h-osteoblasts, a selective and specific covalent functionalization with a bioactive peptide was carried out. The anchoring of a peptide, mapped on the BMP-2 wrist epitope, to the scaffold was performed by a reaction between an aldehyde group of the peptide and the aminic groups of silanized Mn-containing bioceramic. SEM-EDX, FT-IR, and Raman studies confirmed the presence of the peptide grafted onto the scaffold. In in vitro assays, a significant improvement in h-osteoblast proliferation, gene expression, and calcium salt deposition after 7 days was detected in the functionalized Mn-containing bioceramic compared to the controls

    Integrating demand uncertainty in inventory routing for recyclable waste collection

    Get PDF
    Osteoblast cell adhesion to the extracellular matrix is established through two main pathways: one is mediated by the binding between integrin and a minimal adhesion sequence (RGD) on the extracellular protein, the other is based on the interactions between transmembrane proteoglycans and heparin-binding sequences found in many matrix proteins. The aim of this study is the evaluation in an in vivo endosseous implant model of the early osteogenic response of the peri-implant bone to a biomimetic titanium surface functionalized with the retro-inverso 2DHVP peptide, an analogue of Vitronectin heparin binding site. The experimental plan is based on a bilateral study design of Control and 2DHVP implants inserted respectively in the right and left femur distal metaphysis of adult male Wistar rats (n=16) weighing about 300 gr and evaluated after 15 days. Fluorochromic bone vital markers, were given at specific time frame, in order to monitor the dynamic of new bone deposition. The effect inducted by the peptidomimetic coating on the surrounding bone were qualitatively and quantitatively evaluated by means of static and dynamic histomorphometric analyses performed within three concentric and subsequent circular Regions of Interest (ROI) of equivalent thickness (220 μm), ROI1 adjacent to the interface, ROI2, the middle, and ROI3 the farthest. The data indicated that these functionalized implants stimulated a higher bone apposition rate (p<0,01) and larger and rapid osteoblast activation in terms of mineralising surface within ROI1 compared to the Control (p<0,01). These higher osteoblast recruitment and activation leads to a greater bone to implant contact reached for DHVP samples (p<0,5). This represents an initial stimulus of the osteogenic activity that might results in a faster and better osteointegration process

    Epigenetic Mechanisms Regulate Stem Cell Expressed Genes Pou5f1 and Gfra1 in a Male Germ Cell Line

    Get PDF
    Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes

    The protein phosphatase 1 regulator NIPP1 is essential for mammalian spermatogenesis

    Get PDF
    NIPP1 is one of the major nuclear interactors of protein phosphatase PP1. The deletion of NIPP1 in mice is early embryonic lethal, which has precluded functional studies in adult tissues. Hence, we have generated an inducible NIPP1 knockout model using a tamoxifen-inducible Cre recombinase transgene. The inactivation of the NIPP1 encoding alleles (Ppp1r8) in adult mice occurred very efficiently in testis and resulted in a gradual loss of germ cells, culminating in a Sertoli-cell only phenotype. Before the overt development of this phenotype Ppp1r8 -/- testis showed a decreased proliferation and survival capacity of cells of the spermatogenic lineage. A reduced proliferation was also detected after the tamoxifen-induced removal of NIPP1 from cultured testis slices and isolated germ cells enriched for undifferentiated spermatogonia, hinting at a testis-intrinsic defect. Consistent with the observed phenotype, RNA sequencing identified changes in the transcript levels of cell-cycle and apoptosis regulating genes in NIPP1-depleted testis. We conclude that NIPP1 is essential for mammalian spermatogenesis because it is indispensable for the proliferation and survival of progenitor germ cells, including (un)differentiated spermatogonia.publishe

    Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma

    Get PDF
    Background: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer

    Binding to CD4 of synthetic peptides patterned on the principal neutralizing domain of the HIV-1 envelope protein.

    No full text
    The interaction between the viral envelope protein gp120 and the cellular surface antigen CD4 is a key event in HIV-1 infection. Reciprocal high affinity binding sites have been located in the first domain of CD4 and in the carboxy-terminal region of gp120, respectively. Upon infection, the membranes of the target cells fuse; sites of CD4 and gp120, distinct from their high affinity binding sites, play a role in the post-binding events leading to syncytia formation. We have studied the interactions of CD4 with gp120 and gp120-derived peptides using an in vitro assay based on immobilized recombinant soluble CD4 (sCD4). In this system CD4 binds to recombinant soluble gp120 and to anti-receptor peptides derived from the high affinity CD4-binding site of gp120, as well as to peptides corresponding to the principal neutralizing domain (PND) of the envelope protein, i.e., to the domain required for HIV-1-mediated syncytium formation. Competition experiments performed using epitope-specific mAbs and a variety of peptides indicated that PND-derived peptides are specifically recognized by a CD4 site adjacent to, but distinct from, the high affinity gp120-binding site of CD4. Synthetic peptides patterned on the PND of different viral isolates were retained onto sCD4-based affinity columns at different extent; some of the structural requirements for binding were analyzed. Studies performed on CD4+ T-cells showed that PND-derived peptides also interact with CD4 in its native membrane-bound conformation. These results indicate that a direct contact takes place between CD4 and the gp120 domain participating in HIV-induced syncytia formation
    corecore