155 research outputs found

    Soft Pneumatic Prosthetic Hand

    Get PDF

    Generalized molecular solvation in non-aqueous solutions by a single parameter implicit solvation scheme

    Get PDF
    In computer simulations of solvation effects on chemical reactions, continuum modeling techniques regain popularity as a way to efficiently circumvent an otherwise costly sampling of solvent degrees of freedom. As effective techniques, such implicit solvation models always depend on a number of parameters that need to be determined earlier. In the past, the focus lay mostly on an accurate parametrization of water models. Yet, non-aqueous solvents have recently attracted increasing atten- tion, in particular, for the design of battery materials. To this end, we present a systematic parametrization protocol for the Self-Consistent Continuum Solvation (SCCS) model resulting in optimized parameters for 67 non-aqueous solvents. Our parametrization is based on a collection of ≈6000 experimentally measured partition coefficients, which we collected in the Solv@TUM database presented here. The accuracy of our optimized SCCS model is comparable to the well-known universal continuum solvation model (SMx) family of methods, while relying on only a single fit parameter and thereby largely reducing sta- tistical noise. Furthermore, slightly modifying the non-electrostatic terms of the model, we present the SCCS-P solvation model as a more accurate alternative, in particular, for aromatic solutes. Finally, we show that SCCS parameters can, to a good degree of accuracy, also be predicted for solvents outside the database using merely the dielectric bulk permittivity of the solvent of choice

    Protein Activity of the Fusarium fujikuroi Rhodopsins CarO and OpsA and Their Relation to Fungus–Plant Interaction

    Get PDF
    Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.España Ministerio de Ciencia y tecnología BIO20010-15430Junta de Andalucía CTS-663

    Optimization of the Kinematic Chain of the Thumb for a Hand Prosthesis Based on the Kapandji Opposition Test

    Get PDF
    Ponènica presentada a International Symposium on Computer Methods in Biomechanics and Biomedical Engineering - CMBBE 2019The thumb plays a key role in the performance of the hand for grasp-ing and manipulating objects. In artificial hands the complex thumb’s kinematic chain (TKC) is simplified and its five degrees of freedom are reduced to only one or two with the consequent loss of dexterity of the hand. The Kapandji op-position test (KOT) has been clinically used in pathological human hands for evaluating the thumb opposition and it has also been employed in some previ-ous studies as reference for the design of the TKC in artificial hands, but with-out a clearly stated methodology. Based on this approaches, in this study we present a computational method to optimize the whole TKC (base placement, link lengths and joint orientation angles) of an artificial hand based on its per-formance in the KOT. The cost function defined for the optimization (MPE) is a weighted mean position error when trying to reproduce the KOT postures and can be used also as a metric to quantify thumb opposition in the hand. As a case study, the method was applied to the improvement of the TKC of an artificial hand developed by the authors and the MPE was reduced to near one third of that of the original design, increasing significantly the number of reachable po-sitions in the KOT. The metric proposed based on the KOT can be used directly or in combination with other to improve the kinematic chain of artificial hands

    Direct quantitative identification of the "surface trans-effect"

    Get PDF
    The strong parallels between coordination chemistry and adsorption on metal surfaces, with molecules and ligands forming local bonds to individual atoms within a metal surface, have been established over many years of study. The recently proposed "surface trans-effect" (STE) appears to be a further manifestation of this analogous behaviour, but so far the true nature of the modified molecule-metal surface bonding has been unclear. The STE could play an important role in determining the reactivities of surface-supported metal-organic complexes, influencing the design of systems for future applications. However, the current understanding of this effect is incomplete and lacks reliable structural parameters with which to benchmark theoretical calculations. Using X-ray standing waves, we demonstrate that ligation of ammonia and water to iron phthalocyanine (FePc) on Ag(111) increases the adsorption height of the central Fe atom; dispersion corrected density functional theory calculations accurately model this structural effect. The calculated charge redistribution in the FePc/H2O electronic structure induced by adsorption shows an accumulation of charge along the σ-bonding direction between the surface, the Fe atom and the water molecule, similar to the redistribution caused by ammonia. This apparent σ-donor nature of the observed STE on Ag(111) is shown to involve bonding to the delocalised metal surface electrons rather than local bonding to one or more surface atoms, thus indicating that this is a true surface trans-effect

    Extinctions, genetic erosion and conservation options for the black rhinoceros (Diceros bicornis)

    Get PDF
    The black rhinoceros is again on the verge of extinction due to unsustainable poaching in its native range. Despite a wide historic distribution, the black rhinoceros was traditionally thought of as depauperate in genetic variation, and with very little known about its evolutionary history. This knowledge gap has hampered conservation efforts because hunting has dramatically reduced the species’ once continuous distribution, leaving five surviving gene pools of unknown genetic affinity. Here we examined the range-wide genetic structure of historic and modern populations using the largest and most geographically representative sample of black rhinoceroses ever assembled. Using both mitochondrial and nuclear datasets, we described a staggering loss of 69% of the species’ mitochondrial genetic variation, including the most ancestral lineages that are now absent from modern populations. Genetically unique populations in countries such as Nigeria, Cameroon, Chad, Eritrea, Ethiopia, Somalia, Mozambique, Malawi and Angola no longer exist. We found that the historic range of the West African subspecies (D. b. longipes), declared extinct in 2011, extends into southern Kenya, where a handful of individuals survive in the Masai Mara. We also identify conservation units that will help maintain evolutionary potential. Our results suggest a complete re-evaluation of current conservation management paradigms for the black rhinoceros

    Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub

    Get PDF
    The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (www.spibirds.org)\u2014a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration
    corecore