170 research outputs found

    The impact of brain lateralization and Anxiety-Like behaviour in an extensive operant conditioning task in Zebrafish (Danio rerio)

    Get PDF
    © 2019 by the authors. Several studies in mammals, birds, and fish have documented better cognitive abilities associated with an asymmetrical distribution of cognitive functions in the two halves of the brain, also known as 'functional brain lateralization'. However, the role of brain lateralization in learning abilities is still unclear. In addition, although recent studies suggest a link between some personality traits and accuracy in cognitive tasks, the relation between anxiety and learning skills in Skinner boxes needs to be clarified. In the present study, we tested the impact of brain lateralization and anxiety-like behaviour in the performance of an extensive operant conditioning task. Zebrafish tested in a Skinner box underwent 500 trials in a colour discrimination task (red vs. yellow and green vs. blue). To assess the degree of lateralization, fish were observed in a detour test in the presence of a dummy predator, and anxiety-like behaviour was studied by observing scototaxis response in an experimental tank divided into light and dark compartments. Although the low performance in the colour discrimination task did not permit the drawing of firm conclusions, no correlation was found between the accuracy in the colour discrimination task and the behaviour in the detour and scototaxis tests. This suggests that neither different degrees of asymmetries in brain lateralization nor anxiety may significantly impact the learning skills of zebrafish

    No evidence that footedness in pheasants influences cognitive performance in tasks assessing colour discrimination and spatial ability

    Get PDF
    The differential specialization of each side of the brain facilitates the parallel processing of information and has been documented in a wide range of animals. Animals that are more lateralized as indicated by consistent preferential limb use are commonly reported to exhibit superior cognitive ability as well as other behavioural advantages.We assayed the lateralization of 135 young pheasants (Phasianus colchicus), indicated by their footedness in a spontaneous stepping task, and related this measure to individual performance in either 3 assays of visual or spatial learning and memory. We found no evidence that pronounced footedness enhances cognitive ability in any of the tasks. We also found no evidence that an intermediate footedness relates to better cognitive performance. This lack of relationship is surprising because previous work revealed that pheasants have a slight population bias towards right footedness, and when released into the wild, individuals with higher degrees of footedness were more likely to die. One explanation for why extreme lateralization is constrained was that it led to poorer cognitive performance, or that optimal cognitive performance was associated with some intermediate level of lateralization. This stabilizing selection could explain the pattern of moderate lateralization that is seen in most non-human species that have been studied. However, we found no evidence in this study to support this explanation

    Linking Fearfulness and Coping Styles in Fish

    Get PDF
    Consistent individual differences in cognitive appraisal and emotional reactivity, including fearfulness, are important personality traits in humans, non-human mammals, and birds. Comparative studies on teleost fishes support the existence of coping styles and behavioral syndromes also in poikilothermic animals. The functionalist approach to emotions hold that emotions have evolved to ensure appropriate behavioral responses to dangerous or rewarding stimuli. Little information is however available on how evolutionary widespread these putative links between personality and the expression of emotional or affective states such as fear are. Here we disclose that individual variation in coping style predicts fear responses in Nile tilapia Oreochromis niloticus, using the principle of avoidance learning. Fish previously screened for coping style were given the possibility to escape a signalled aversive stimulus. Fearful individuals showed a range of typically reactive traits such as slow recovery of feed intake in a novel environment, neophobia, and high post-stress cortisol levels. Hence, emotional reactivity and appraisal would appear to be an essential component of animal personality in species distributed throughout the vertebrate subphylum

    Evidence for Two Numerical Systems That Are Similar in Humans and Guppies

    Get PDF
    Background: Humans and non-human animals share an approximate non-verbal system for representing and comparing numerosities that has no upper limit and for which accuracy is dependent on the numerical ratio. Current evidence indicates that the mechanism for keeping track of individual objects can also be used for numerical purposes; if so, its accuracy will be independent of numerical ratio, but its capacity is limited to the number of items that can be tracked, about four. There is, however, growing controversy as to whether two separate number systems are present in other vertebrate species. Methodology/Principal Findings: In this study, we compared the ability of undergraduate students and guppies to discriminate the same numerical ratios, both within and beyond the small number range. In both students and fish the performance was ratio-independent for the numbers 1–4, while it steadily increased with numerical distance when larger numbers were presented. Conclusions/Significance: Our results suggest that two distinct systems underlie quantity discrimination in both humans and fish, implying that the building blocks of uniquely human mathematical abilities may be evolutionarily ancient, datin

    Lateralized Kinematics of Predation Behavior in a Lake Tanganyika Scale-Eating Cichlid Fish

    Get PDF
    Behavioral lateralization has been documented in many vertebrates. The scale-eating cichlid fish Perissodus microlepis is well known for exhibiting lateral dimorphism in its mouth morphology and lateralized behavior in robbing scales from prey fish. A previous field study indicated that this mouth asymmetry closely correlates with the side on which prey is attacked, but details of this species' predation behavior have not been previously analyzed because of the rapidity of the movements. Here, we studied scale-eating behavior in cichlids in a tank through high-speed video monitoring and quantitative assessment of behavioral laterality and kinematics. The fish observed showed a clear bias toward striking on one side, which closely correlated with their asymmetric mouth morphologies. Furthermore, the maximum angular velocity and amplitude of body flexion were significantly larger during attacks on the preferred side compared to those on the nonpreferred side, permitting increased predation success. In contrast, no such lateral difference in movement elements was observed in acoustically evoked flexion during the escape response, which is similar to flexion during scale eating and suggests that they share a common motor control pathway. Thus the neuronal circuits controlling body flexion during scale eating may be functionally lateralized upstream of this common motor pathway

    Corpus Callosum Morphology in Capuchin Monkeys Is Influenced by Sex and Handedness

    Get PDF
    Sex differences have been reported in both overall corpus callosum area and its regional subdivisions in humans. Some have suggested this reflects a unique adaptation in humans, as similar sex differences in corpus callosum morphology have not been reported in any other species of primate examined to date. Furthermore, an association between various measurements of corpus callosum morphology and handedness has been found in humans and chimpanzees. In the current study, we report measurements of corpus callosum cross-sectional area from midsagittal MR images collected in vivo from 14 adult capuchin monkeys, 9 of which were also characterized for hand preference on a coordinated bimanual task. Adult females were found to have a significantly larger corpus callosum: brain volume ratio, rostral body, posterior midbody, isthmus, and splenium than adult males. Left-handed individuals had a larger relative overall corpus callosum area than did right-handed individuals. Additionally, a significant sex and handedness interaction was found for anterior midbody, with right-handed males having a significantly smaller area than right-handed females. These results suggest that sex and handedness influences on corpus callosum morphology are not restricted to Homo sapiens

    Розрахунок та проектування окремого фундаменту будівлі на природній ґрунтовій основі. Методичні рекомендації до виконання практичних завдань та курсового проекту з дисципліни «Механіка ґрунтів, основи і фундаменти» сту- дентами напрямів підготовки 6.060101 Будівництво та 6.050301 Гірництво

    Get PDF
    Подано методичні рекомендації до виконання практичних завдань та кур- сового проекту з дисципліни «Механіка ґрунтів, основи і фундаменти» для сту- дентів напрямів підготовки 6.060101 Будівництво та 6.050301 Гірництво. Розглянуто порядок проектування фундаменту будівлі мілкого закладан- ня на природній ґрунтовій основі. Методичні рекомендації передбачають виконання курсового проекту «Розрахунок та проектування окремого фундаменту будівлі на природній ґрун- товій основі» як із викладачем, так і під час самостійної роботи. Можна використовувати також у підготовці курсового та дипломного про- ектування

    Visually Guided Avoidance in the Chameleon (Chamaeleo chameleon): Response Patterns and Lateralization

    Get PDF
    The common chameleon, Chamaeleo chameleon, is an arboreal lizard with highly independent, large-amplitude eye movements. In response to a moving threat, a chameleon on a perch responds with distinct avoidance movements that are expressed in its continuous positioning on the side of the perch distal to the threat. We analyzed body-exposure patterns during threat avoidance for evidence of lateralization, that is, asymmetry at the functional/behavioral levels. Chameleons were exposed to a threat approaching horizontally from the left or right, as they held onto a vertical pole that was either wider or narrower than the width of their head, providing, respectively, monocular or binocular viewing of the threat. We found two equal-sized sub-groups, each displaying lateralization of motor responses to a given direction of stimulus approach. Such an anti-symmetrical distribution of lateralization in a population may be indicative of situations in which organisms are regularly exposed to crucial stimuli from all spatial directions. This is because a bimodal distribution of responses to threat in a natural population will reduce the spatial advantage of predators

    Cortical Representation of Lateralized Grasping in Chimpanzees (Pan troglodytes): A Combined MRI and PET Study

    Get PDF
    Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individual's preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been neuronatomically described in chimpanzees and other great apes and is similarly associated with handedness. However, whether the chimpanzee KNOB represents the hand region is unclear from the extant literature. Here, we used PET to quantify neural metabolic activity in chimpanzees when engaged in unilateral reach-and-grasping responses and found significantly lateralized activation of the KNOB region in the hemisphere contralateral to the hand used by the chimpanzees. We subsequently constructed a probabilistic map of the KNOB region in chimpanzees in order to assess the overlap in consistency in the anatomical landmarks of the KNOB with the functional maps generated from the PET analysis. We found significant overlap in the anatomical and functional voxels comprising the KNOB region, suggesting that the KNOB does correspond to the hand region in chimpanzees. Lastly, from the probabilistic maps, we compared right- and left-handed chimpanzees on lateralization in grey and white matter within the KNOB region and found that asymmetries in white matter of the KNOB region were larger in the hemisphere contralateral to the preferred hand. These results suggest that neuroanatomical asymmetries in the KNOB likely reflect changes in connectivity in primary motor cortex that are experience dependent in chimpanzees and possibly humans
    corecore