151 research outputs found

    Application of phenotypic microarrays to environmental microbiology

    Get PDF
    Environmental organisms are extremely diverse and only a small fraction has been successfully cultured in the laboratory. Culture in micro wells provides a method for rapid screening of a wide variety of growth conditions and commercially available plates contain a large number of substrates, nutrient sources, and inhibitors, which can provide an assessment of the phenotype of an organism. This review describes applications of phenotype arrays to anaerobic and thermophilic microorganisms, use of the plates in stress response studies, in development of culture media for newly discovered strains, and for assessment of phenotype of environmental communities. Also discussed are considerations and challenges in data interpretation and visualization, including data normalization, statistics, and curve fitting

    Unravelling the Yeast Cell Cycle Using the TriGen Algorithm

    Get PDF
    Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping allowing genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of temporal microarray data in which the genes are evaluated under certain conditions at several time points. In this paper, we present the results of applying the TriGen algorithm, a genetic algorithm that finds triclusters that take into account the experimental conditions and the time points, to the yeast cell cycle problem, where the goal is to identify all genes whose expression levels are regulated by the cell cycle

    Brain age as a surrogate marker for cognitive performance in multiple sclerosis

    Get PDF
    Background: Data from neuro-imaging techniques allow us to estimate a brain's age. Brain age is easily interpretable as "how old the brain looks", and could therefore be an attractive communication tool for brain health in clinical practice. This study aimed to investigate its clinical utility by investigating the relationship between brain age and cognitive performance in multiple sclerosis (MS). Methods: A linear regression model was trained to predict age from brain MRI volumetric features and sex in a healthy control dataset (HC_train, n=1673). This model was used to predict brain age in two test sets: HC_test (n=50) and MS_test (n=201). Brain-Predicted Age Difference (BPAD) was calculated as BPAD=brain age minus chronological age. Cognitive performance was assessed by the Symbol Digit Modalities Test (SDMT). Results: Brain age was significantly related to SDMT scores in the MS_test dataset (r=-0.46, p<.001), and contributed uniquely to variance in SDMT beyond chronological age, reflected by a significant correlation between BPAD and SDMT (r=-0.24, p<.001) and a significant weight (-0.25, p=0.002) in a multivariate regression equation with age. Conclusions: Brain age is a candidate biomarker for cognitive dysfunction in MS and an easy to grasp metric for brain health

    A novel flexible field-aligned coordinate system for tokamak edge plasma simulation

    Get PDF
    Tokamak plasmas are confined by a magnetic field that limits the particle and heat transport perpendicular to the field. Parallel to the field the ionised particles can move freely, so to obtain confinement the field lines are “closed” (ie.form closed surfaces of constant poloidal flux) in the core of a tokamak. Towards, the edge, however, the field lines intersect physical surfaces, leading to interaction between neutral and ionised particles, and the potential melting of the material surface. Simulation of this interaction is important for predicting the performance and lifetime of future tokamak devices such as ITER. Field-aligned coordinates are commonly used in the simulation of tokamak plasmas due to the geometry and magnetic topology of the system. However, these coordinates are limited in the geometry they allow in the poloidal plane due to orthogonality requirements. A novel 3D coordinate system is proposed herein that relaxes this constraint so that any arbitrary, smoothly varying geometry can be matched in the poloidal plane while maintaining a field-aligned coordinate. This system is implemented in BOUT++ and tested for accuracy using the method of manufactured solutions. A MAST edge cross-section is simulated using a fluid plasma model and the results show expected behaviour for density, temperature, and velocity. Finally, simulations of an isolated divertor leg are conducted with and without neutrals to demonstrate the ion-neutral interaction near the divertor plate and the corresponding beneficial decrease in plasma temperature

    Perfusion by Arterial Spin Labelling following Single Dose Tadalafil in Small Vessel Disease (PASTIS): study protocol for a randomized controlled trial

    Get PDF
    Background Cerebral small vessel disease is a common cause of vascular cognitive impairment in older people, with no licensed treatment. Cerebral blood flow is reduced in small vessel disease. Tadalafil is a widely prescribed phosphodiesterase-5 inhibitor that increases blood flow in other vascular territories. The aim of this trial is to test the hypothesis that tadalafil increases cerebral blood flow in older people with small vessel disease. Methods/design Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS) is a phase II randomised double-blind crossover trial. In two visits, 7-30 days apart, participants undergo arterial spin labelling to measure cerebral blood flow and a battery of cognitive tests, pre- and post-dosing with oral tadalafil (20 mg) or placebo. Sample size: 54 participants are required to detect a 15% increase in cerebral blood flow in subcortical white matter (p < 0.05, 90% power). Primary outcomes are cerebral blood flow in subcortical white matter and deep grey nuclei. Secondary outcomes are cortical grey matter cerebral blood flow and performance on cognitive tests (reaction time, information processing speed, digit span forwards and backwards, semantic fluency). Discussion Recruitment started on 4th September 2015 and 36 participants have completed to date (19th April 2017). No serious adverse events have occurred. All participants have been recruited from one centre, St George’s University Hospitals NHS Foundation Trust. Trial registration European Union Clinical Trials Register: EudraCT number 2015-001235-20. Registered on 13 May 2015

    Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus

    Get PDF
    Gluconacetobacter diazotrophicus, an endophyte isolated from sugarcane, is a strict aerobe that fixates N2. This process is catalyzed by nitrogenase and requires copious amounts of ATP. Nitrogenase activity is extremely sensitive to inhibition by oxygen and reactive oxygen species (ROS). However, the elevated oxidative metabolic rates required to sustain biological nitrogen fixation (BNF) may favor an increased production of ROS. Here, we explored this paradox and observed that ROS levels are, in fact, decreased in nitrogen-fixing cells due to the up-regulation of transcript levels of six ROS-detoxifying genes. A cluster analyses based on common expression patterns revealed the existence of a stable cluster with 99.8% similarity made up of the genes encoding the α-subunit of nitrogenase Mo–Fe protein (nifD), superoxide dismutase (sodA) and catalase type E (katE). Finally, nitrogenase activity was inhibited in a dose-dependent manner by paraquat, a redox cycler that increases cellular ROS levels. Our data revealed that ROS can strongly inhibit nitrogenase activity, and G. diazotrophicus alters its redox metabolism during BNF by increasing antioxidant transcript levels resulting in a lower ROS generation. We suggest that careful controlled ROS production during this critical phase is an adaptive mechanism to allow nitrogen fixation

    Magnetic Coordinate Systems

    Get PDF
    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly

    Validating Gene Clusterings by Selecting Informative Gene Ontology Terms with Mutual Information

    Full text link
    We propose a method for global validation of gene clusterings. The method selects a set of informative and non-redundant GO terms through an exploration of the Gene Ontology structure guided by mutual information. Our approach yields a global assessment of the clustering quality, and a higher level interpretation for the clusters, as it relates GO terms with specific clusters. We show that in two gene expression data sets our method offers an improvement over previous approaches
    corecore