59 research outputs found

    Global Livestock Production Systems

    Get PDF
    Informed livestock sector policy development and priority setting is heavily dependent on a good understanding of livestock production systems. In a collaborative effort between the Food and Agriculture Organization and the International Livestock Research Institute, stock has been taken of where we have come from in agricultural systems classification and mapping; the current state of the art; and the directions in which research and data collection efforts need to take in the future. The book also addresses issues relating to the intensity and scale of production, moving from what is done to how it is done. The intensification of production is an area of particular importance, for it is in the intensive systems that changes are occurring most rapidly and where most information is needed on the implications that intensification of production may have for livelihoods, poverty alleviation, animal diseases, public health and environmental outcomes. A series of case studies is provided, linking livestock production systems to rural livelihoods and poverty and examples of the application of livestock production system maps are drawn from livestock production, now and in the future; livestock's impact on the global environment; animal and public health; and livestock and livelihoods. This book provides a formal reference to Version 5 of the global livestock production systems map, and to revised estimates of the numbers of rural poor livestock keepers, by country and livestock production system. These maps and data are freely available for download via FAO's web pages: www.fao.org/AG/againfo/resources/en/glw/home.html. It is hoped that this publication will stimulate further work in this field and encourage the use of livestock production systems information and maps in research and analysis

    European anthropogenic AFOLU emissions and their uncertainties: a review and benchmark data

    Get PDF
    Emission of greenhouse gases (GHG) and removals from land, including both anthropogenic and natural fluxes, require reliable quantification, along with estimates of their inherent uncertainties, in order to support credible mitigation action under the Paris Agreement. This study provides a state-of-the-art scientific overview of bottom-up anthropogenic emissions data from agriculture, forestry and other land use (AFOLU) in Europe. The data integrates recent AFOLU emission inventories with ecosystem data and land carbon models, covering the European Union (EU28) and summarizes GHG emissions and removals over the period 1990–2016, of relevance for UNFCCC. This compilation of bottom-up estimates of the AFOLU GHG emissions of European national greenhouse gas inventories (NGHGI) with those of land carbon models and observation-based estimates of large-scale GHG fluxes, aims at improving the overall estimates of the GHG balance in Europe with respect to land GHG emissions and removals. Particular effort is devoted to the estimation of uncertainty, its propagation and role in the comparison of different estimates. While NGHGI data for EU28 provides consistent quantification of uncertainty following the established IPCC guidelines, uncertainty in the estimates produced with other methods will need to account for both within model uncertainty and the spread from different model results. At EU28 level, the largest inconsistencies between estimates are mainly due to different sources of data related to human activity which result in emissions or removals taking place during a given period of time (IPCC 2006) referred here as activity data (AD) and methodologies (Tiers) used for calculating emissions/removals from AFOLU sectors. The referenced datasets related to figures are visualised at https://doi.org/10.5281/zenodo.3460311, Petrescu et al., 2019

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990-2018

    Get PDF
    Reliable quantification of the sources and sinks of atmospheric carbon dioxide (CO2), including that of their trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Kyoto Protocol and the Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and natural sources and sinks of CO2 for the European Union and UK (EU27 + UK), derived from a combination of state-of-the-art bottom-up (BU) and top-down (TD) data sources and models. Given the wide scope of the work and the variety of datasets involved, this study focuses on identifying essential questions which need to be answered to properly understand the differences between various datasets, in particular with regards to the less-well-characterized fluxes from managed ecosystems. The work integrates recent emission inventory data, process-based ecosystem model results, data-driven sector model results and inverse modeling estimates over the period 1990-2018. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported under the UNFCCC in 2019, aiming to assess and understand the differences between approaches. For the uncertainties in NGHGIs, we used the standard deviation obtained by varying parameters of inventory calculations, reported by the member states following the IPCC Guidelines. Variation in estimates produced with other methods, like atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arises from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. In comparing NGHGIs with other approaches, a key source of uncertainty is that related to different system boundaries and emission categories (CO2 fossil) and the use of different land use definitions for reporting emissions from land use, land use change and forestry (LULUCF) activities (CO2 land). At the EU27 + UK level, the NGHGI (2019) fossil CO2 emissions (including cement production) account for 2624 Tg CO2 in 2014 while all the other seven bottom-up sources are consistent with the NGHGIs and report a mean of 2588 (± 463 Tg CO2). The inversion reports 2700 Tg CO2 (± 480 Tg CO2), which is well in line with the national inventories. Over 2011-2015, the CO2 land sources and sinks from NGHGI estimates report-90 Tg C yr-1 ± 30 Tg C yr-1 while all other BU approaches report a mean sink of-98 Tg C yr-1 (± 362 Tg of C from dynamic global vegetation models only). For the TD model ensemble results, we observe a much larger spread for regional inversions (i.e., mean of 253 Tg C yr-1 ± 400 Tg C yr-1). This concludes that (a) current independent approaches are consistent with NGHGIs and (b) their uncertainty is too large to allow a verification because of model differences and probably also because of the definition of "CO2 flux"obtained from different approaches. The referenced datasets related to figures are visualized. © 2021 Ana Maria Roxana Petrescu et al

    Impact of “Grain to Green” Programme on echinococcosis infection in Ningxia Hui Autonomous Region of China

    Get PDF
    Cystic echinococcosis (CE) is endemic among the human population of Xiji County, Ningxia Hui Autonomous Region, China, where the prevalence is estimated to be between 2.2% and 3.6%. Government-run sheep abattoirs in Xiji County have closed in recent years and, as a consequence, slaughter is carried out mostly at rural market places. The market place in Xinglong Township, Xiji County, is home to an increasing number of stray dogs and the lack of government control over slaughter practices potentially favours Echinococcus granulosus transmission. A survey of sheep, goats and cattle reared in Xiji County was conducted in Xinglong Market and Xinglong Township to determine prevalence and transmission dynamics of E. granulosus infection. The liver and lungs of all livestock aged one year and older were examined macroscopically post mortem; visual examination and palpation of organs determined overall prevalence of E. granulosus. Cysts consistent in appearance with E. granulosus were observed in 2/184 sheep (prevalence 1.0%) and 1/55 of the cattle examined (prevalence 1.8%); 0/13 goats were found to be infected. However, microscopic examination of these suspected cysts failed to confirm these samples as E. granulosus, giving a prevalence of confirmed infection of zero percent in all three species. The prevalence of liver fluke was 61.3% in sheep and 12.7% in cattle with a significant difference between males and females (p ≤ 0.001). Considering the high prevalence of echinococcosis in the local human population, the absence of CE observed among commercially slaughtered livestock was surprising. Several explanations for this discrepancy and their implications are proposed.The study was supported by funds of NNSFC, China (30960339), NHMRC, Australia (APP1009539). DJG is an Australian Research Council Fellow (DECRA); ACAC is NHMRC Senior Research Fellow; DPM is NHMRC Senior Principal Research Fellow; YRY is Griffith University Research Fellow

    The consolidated European synthesis of CO2emissions and removals for the European Union and United Kingdom : 1990-2018

    Get PDF
    Acknowledgements FAOSTAT statistics are produced and disseminated with the support of its member countries to the FAO regular budget. Philippe Ciais acknowledges the support of the European Research Council Synergy project SyG-2013-610028 IMBALANCE-P and from the ANR CLAND Convergence Institute. We acknowledge the work of the entire EDGAR group (Marilena Muntean, Diego Guizzardi, Edwin Schaaf and Jos Olivier). We acknowledge Stephen Sitch and the authors of the DGVMs TRENDY v7 ensemble models for providing us with the data. Financial support This research has been supported by the H2020 European Research Council (grant no. 776810).Peer reviewedPublisher PD

    The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990–2017

    Get PDF
    Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 + UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990-2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011-2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr-1 (EDGAR v5.0) and 19.0 Tg CH4 yr-1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr-1. The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr-1. Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4 yr-1) and surface network (24.4 Tg CH4 yr-1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 Tg CH4 yr-1. For N2O emissions, over the 2011-2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr-1, respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr-1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr-1, respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU+UK scale and at the national scale. The referenced datasets related to figures are visualized at. (Petrescu et al., 2020b)

    The consolidated European synthesis of CH₄ and N₂O emissions for the European Union and United Kingdom: 1990–2019

    Get PDF
    Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH₄ and N₂O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990–2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. For CH₄ emissions, over the updated 2015–2019 period, which covers a sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU approaches are directly comparable, accounting for mean emissions of 20.5 Tg CH₄ yrc (EDGARv6.0, last year 2018) and 18.4 Tg CH₄ yr⁻¹ (GAINS, last year 2015), close to the NGHGI estimates of 17.5±2.1 Tg CH₄ yr⁻¹. TD inversion estimates give higher emission estimates, as they also detect natural emissions. Over the same period, high-resolution regional TD inversions report a mean emission of 34 Tg CH₄ yr⁻¹. Coarser-resolution global-scale TD inversions result in emission estimates of 23 and 24 Tg CH₄ yr⁻¹ inferred from GOSAT and surface (SURF) network atmospheric measurements, respectively. The magnitude of natural peatland and mineral soil emissions from the JSBACH–HIMMELI model, natural rivers, lake and reservoir emissions, geological sources, and biomass burning together could account for the gap between NGHGI and inversions and account for 8 Tg CH₄ yr⁻¹. For N₂O emissions, over the 2015–2019 period, both BU products (EDGARv6.0 and GAINS) report a mean value of anthropogenic emissions of 0.9 Tg N₂O yr⁻¹, close to the NGHGI data (0.8±55 % Tg N₂O yr⁻¹). Over the same period, the mean of TD global and regional inversions was 1.4 Tg N₂O yr⁻¹ (excluding TOMCAT, which reported no data). The TD and BU comparison method defined in this study can be operationalized for future annual updates for the calculation of CH₄ and N₂O budgets at the national and EU27 + UK scales. Future comparability will be enhanced with further steps involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, which is of great importance for CH₄ and N₂O, and may help identify sector contributions to divergence between prior and posterior estimates at the annual and/or inter-annual scale. Even if currently comparison between CH₄ and N₂O inversion estimates and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from atmospheric observations represent the most independent data against which inventory totals can be compared. With anticipated improvements in atmospheric modeling and observations, as well as modeling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying emission inventories for CH₄, N₂O and other GHGs. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.7553800 (Petrescu et al., 2023)
    corecore