693 research outputs found

    Clerocidin selectively modifies the gyrase-DNA gate to induce irreversible and reversible DNA damage

    Get PDF
    Clerocidin (CL), a microbial diterpenoid, reacts with DNA via its epoxide group and stimulates DNA cleavage by type II DNA topoisomerases. The molecular basis of CL action is poorly understood. We establish by genetic means that CL targets DNA gyrase in the gram-positive bacterium Streptococcus pneumoniae, and promotes gyrase-dependent single- and double-stranded DNA cleavage in vitro. CL-stimulated DNA breakage exhibited a strong preference for guanine preceding the scission site (-1 position). Mutagenesis of -1 guanines to A, C or T abrogated CL cleavage at a strong pBR322 site. Surprisingly, for double-strand breaks, scission on one strand consistently involved a modified (piperidine-labile) guanine and was not reversed by heat, salt or EDTA, whereas complementary strand scission occurred at a piperidine-stable -1 nt and was reversed by EDTA. CL did not induce cleavage by a mutant gyrase (GyrA G79A) identified here in CL-resistant pneumococci. Indeed, mutations at G79 and at the neighbouring S81 residue in the GyrA breakage-reunion domain discriminated poisoning by CL from that of antibacterial quinolones. The results suggest a novel mechanism of enzyme inhibition in which the -1 nt at the gyrase-DNA gate exhibit different CL reactivities to produce both irreversible and reversible DNA damage

    Distinct requirements for the Rad32(Mre¹¹) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA

    Get PDF
    For a cancer cell to resist treatment with drugs that trap topoisomerases covalently on the DNA, the topoisomerase must be removed. In this study, we provide evidence that the Schizosaccharomyces pombe Rad32Mre11 nuclease activity is involved in the removal of both Top2 from 5′ DNA ends as well as Top1 from 3′ ends in vivo. A ctp1CtIP deletion is defective for Top2 removal but overproficient for Top1 removal, suggesting that Ctp1CtIP plays distinct roles in removing topoisomerases from 5′ and 3′ DNA ends. Analysis of separation of function mutants suggests that MRN-dependent topoisomerase removal contributes significantly to resistance against topoisomerase-trapping drugs. This study has important implications for our understanding of the role of the MRN complex and CtIP in resistance of cells to a clinically important group of anticancer drugs

    Methodological criteria for the assessment of moderators in systematic reviews of randomised controlled trials : a consensus study

    Get PDF
    Background: Current methodological guidelines provide advice about the assessment of sub-group analysis within RCTs, but do not specify explicit criteria for assessment. Our objective was to provide researchers with a set of criteria that will facilitate the grading of evidence for moderators, in systematic reviews. Method: We developed a set of criteria from methodological manuscripts (n = 18) using snowballing technique, and electronic database searches. Criteria were reviewed by an international Delphi panel (n = 21), comprising authors who have published methodological papers in this area, and researchers who have been active in the study of sub-group analysis in RCTs. We used the Research ANd Development/University of California Los Angeles appropriateness method to assess consensus on the quantitative data. Free responses were coded for consensus and disagreement. In a subsequent round additional criteria were extracted from the Cochrane Reviewers’ Handbook, and the process was repeated. Results: The recommendations are that meta-analysts report both confirmatory and exploratory findings for subgroups analysis. Confirmatory findings must only come from studies in which a specific theory/evidence based apriori statement is made. Exploratory findings may be used to inform future/subsequent trials. However, for inclusion in the meta-analysis of moderators, the following additional criteria should be applied to each study: Baseline factors should be measured prior to randomisation, measurement of baseline factors should be of adequate reliability and validity, and a specific test of the interaction between baseline factors and interventions must be presented. Conclusions: There is consensus from a group of 21 international experts that methodological criteria to assess moderators within systematic reviews of RCTs is both timely and necessary. The consensus from the experts resulted in five criteria divided into two groups when synthesising evidence: confirmatory findings to support hypotheses about moderators and exploratory findings to inform future research. These recommendations are discussed in reference to previous recommendations for evaluating and reporting moderator studies

    Structural basis for topoisomerase VI inhibition by the anti-Hsp90 drug radicicol

    Get PDF
    Members of the GHL ATPase superfamily, including type II topoisomerases, Hsp90-class chaperones, and MutL, all share a common GHKL-type ATP-binding fold and act as nucleotide-controlled ‘molecular clamps’. These enzymes' ATP-binding sites have proven to be rich drug targets, and certain inhibitors of type II topoisomerases and Hsp90 bind to this region and competitively inhibit these enzymes. Recently, it was found that radicicol, a drug known to block Hsp90 function, also inhibits the archaeal type IIB topoisomerase topo VI. Here, we use X-ray crystallography to show that despite low sequence identity (∼10–12%) between topo VI and Hsp90, radicicol binds to the ATPase sites of these two enzymes in an equivalent manner. We further demonstrate that radicicol inhibits both the dimerization of the topo VI ATPase domains and ATP hydrolysis, two critical steps in the enzyme's strand passage reaction. This work contributes to a growing set of structures detailing the interactions between GHL-family proteins and various drugs, and reveals radicicol as a versatile scaffold for targeting distantly related GHL enzymes

    Small business owners' health and safety intentions: A cross-sectional survey

    Get PDF
    BACKGROUND: Little is known about the variables underlying small business owners' behavioural intentions toward workplace health and safety. This project explores the relationship between three mediating variables (Attitude Toward Safety, Subjective Norm and Perceived Behavioural Control) and owners' Intentions Toward Safety, following the Theory of Planned Behaviour. We also investigate the role of beliefs underlying each mediating variable. METHODS: Seven hundred businesses (5–50 employees) were randomly selected from 4084 eligible companies in a manufacturing business database (SIC codes 24 to 39). The 348 respondents are on average 51 yrs of age, 86% male, 96% white and have 2 to 4 years of post-secondary school. RESULTS: All three mediator variables are significantly correlated with Intentions Toward Safety; Attitude Toward Safety shows the strongest correlation, which is confirmed by path analysis. Owners with higher attitudes toward safety have a higher probability of believing that improving workplace health and safety will make employees' healthier and happier, show that they care, increase employee productivity, lower workers' compensation costs, increase product quality and lower costs. CONCLUSION: These results suggest that interventions aimed at increasing owners' health and safety intentions (and thus, behaviours) should focus on demonstrating positive employee health and product quality outcomes

    Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants

    Get PDF
    Regulation of homologous recombination (HR) represents the best-characterized DNA repair function of p53. The role of p53 phosphorylation in DNA repair is largely unknown. Here, we show that wild-type p53 repressed repair of DNA double-strand breaks (DSBs) by HR in a manner partially requiring the ATM/ATR phosphorylation site, serine 15. Cdk-mediated phosphorylation of serine 315 was dispensable for this anti-recombinogenic effect. However, without targeted cleavage of the HR substrate, serine 315 phosphorylation was necessary for the activation of topoisomerase I-dependent HR by p53. Moreover, overexpression of cyclin A1, which mimics the situation in tumors, inappropriately stimulated DSB-induced HR in the presence of oncogenic p53 mutants (not Wtp53). This effect required cyclin A1/cdk-mediated phosphorylation for stable complex formation with topoisomerase I. We conclude that p53 mutants have lost the balance between activation and repression of HR, which results in a net increase of potentially mutagenic DNA rearrangements. Our data provide new insight into the mechanism underlying gain-of-function of mutant p53 in genomic instability
    corecore