114 research outputs found

    Kinetics of growth of non-equilibrium fluctuations during thermodiffusion in a polymer solution

    Get PDF
    Abstract.: A thermal diffusion process occurring in a binary liquid mixture is accompanied by long ranged non-equilibrium concentration fluctuations. The amplitude of these fluctuations at large length scales can be orders of magnitude larger than that of equilibrium ones. So far non-equilibrium fluctuations have been mainly investigated under stationary or quasi-stationary conditions, a situation that allows to achieve a detailed statistical characterization of their static and dynamic properties. In this work we investigate the kinetics of growth of non-equilibrium concentration fluctuations during a transient thermodiffusion process, starting from a configuration where the concentration of the sample is uniform. The use of a large molecular weight polymer solution allows to attain a slow dynamics of growth of the macroscopic concentration profile. We focus on the development of fluctuations at small wave vectors, where their amplitude is strongly limited by the presence of gravity. We show that the growth rate of non-equilibrium fluctuations follows a power law Rf(q,t) 1d1t as a function of time, without any typical time scale and independently of the wave vector. We formulate a phenomenological model that allows to relate the rate of growth of non-equilibrium fluctuations to the growth of the macroscopic concentration profile in the absence of arbitrary parameters

    Theatre to motivate the study of physics

    Get PDF
    A survey we carried out in upper secondary schools showed that the majority of the students consider physics as an important resource, yet as essentially connected to technology in strict terms, and not contributing \u201cculture\u201d, being too difficult a subject. Its appreciation tends to fade as their education progresses through the grades. The search for physics communication methods to increase interest and motivation among students prompted the Department of Physics at the University of Milan to establish the Laboratory of ScienzATeatro (SAT) in 2004. Up to May 2010, SAT staged three shows and one lesson-show having physics as a main theme, for students attending any grades at school. Good indicators of the efficacy of those shows are: the number of repeats (256 of them up to May 2010), the reputation of the theatres in which they were performed, and the results of two surveys on the achievement of the goals, which saw the participation of over 50 classes each

    A semantic deconstruction of session types

    Get PDF
    We investigate the semantic foundations of session types, by revisiting them in the abstract setting of labelled transition systems. The crucial insight is a simulation relation which generalises the usual syntax-directed notions of typing and subtyping, and encompasses both synchronous and asynchronous binary session types. This allows us to extend the session types theory to some common programming patterns which are not typically considered in the session types literature

    Equilibrium and nonequilibrium fluctuations at the interface between two fluid phases

    Full text link
    We have performed small-angle light-scattering measurements of the static structure factor of a critical binary mixture undergoing diffusive partial remixing. An uncommon scattering geometry integrates the structure factor over the sample thickness, allowing different regions of the concentration profile to be probed simultaneously. Our experiment shows the existence of interface capillary waves throughout the macroscopic evolution to an equilibrium interface, and allows to derive the time evolution of surface tension. Interfacial properties are shown to attain their equilibrium values quickly compared to the system's macroscopic equilibration time.Comment: 10 pages, 5 figures, submitted to PR

    Dynamical heterogeneities close to a colloidal gel

    Full text link
    Dynamical heterogeneities in a colloidal fluid close to gelation are studied by means of computer simulations. A clear distinction between some fast particles and the rest, slow ones, is observed, yielding a picture of the gel composed by two populations with different mobilities. Analyzing the statics and dynamics of both sets of particles, it is shown that the slow particles form a network of stuck particles, whereas the fast ones are able to move over long distances. Correlation functions show that the environment of the fast particles relaxes much faster than that of the slow ones, but at short times the bonds between fast particles are longer lived due to the flexibility of their structure. No string-like motion is observed for the fast particles, but they occupy preferential sites in the surface of the structure formed by the slow ones

    Simulation study of Non-ergodicity Transitions: Gelation in Colloidal Systems with Short Range Attractions

    Full text link
    Computer simulations were used to study the gel transition occurring in colloidal systems with short range attractions. A colloid-polymer mixture was modelled and the results were compared with mode coupling theory expectations and with the results for other systems (hard spheres and Lennard Jones). The self-intermediate scattering function and the mean squared displacement were used as the main dynamical quantities. Two different colloid packing fractions have been studied. For the lower packing fraction, α\alpha-scaling holds and the wave-vector analysis of the correlation function shows that gelation is a regular non-ergodicity transition within MCT. The leading mechanism for this novel non-ergodicity transition is identified as bond formation caused by the short range attraction. The time scale and diffusion coefficient also show qualitatively the expected behaviour, although different exponents are found for the power-law divergences of these two quantities. The non-Gaussian parameter was also studied and very large correction to Gaussian behaviour found. The system with higher colloid packing fraction shows indications of a nearby high-order singularity, causing α\alpha-scaling to fail, but the general expectations for non-ergodicity transitions still hold.Comment: 13 pages, 15 figure

    Newborn spheroids at high redshift: when and how did the dominant, old stars in today's massive galaxies form?

    Get PDF
    We study ~330 massive (M* > 10^9.5 MSun), newborn spheroidal galaxies (SGs) around the epoch of peak star formation (1<z<3), to explore the high-redshift origin of SGs and gain insight into when and how the old stellar populations that dominate today's Universe formed. The sample is drawn from the HST/WFC3 Early-Release Science programme, which provides deep 10-filter (0.2 - 1.7 micron) HST imaging over a third of the GOODS-South field. We find that the star formation episodes that built the SGs likely peaked in the redshift range 2<z<5 (with a median of z~3) and have decay timescales shorter than ~1.5 Gyr. Starburst timescales and ages show no trend with stellar mass in the range 10^9.5 < M* < 10^10.5 MSun. However, the timescales show increased scatter towards lower values ( 10^10.5 MSun, and an age trend becomes evident in this mass regime: SGs with M* > 10^11.5 MSun are ~2 Gyrs older than their counterparts with M* < 10^10.5 MSun. Nevertheless, a smooth downsizing trend with galaxy mass is not observed, and the large scatter in starburst ages indicate that SGs are not a particularly coeval population. Around half of the blue SGs appear not to drive their star formation via major mergers, and those that have experienced a recent major merger, show only modest enhancements (~40%) in their specific star formation rates. Our empirical study indicates that processes other than major mergers (e.g. violent disk instability driven by cold streams and/or minor mergers) likely play a dominant role in building SGs, and creating a significant fraction of the old stellar populations that dominate today's Universe.Comment: MNRAS in pres

    European Space Agency experiments on thermodiffusion of fluid mixtures in space

    Get PDF
    Abstract.: This paper describes the European Space Agency (ESA) experiments devoted to study thermodiffusion of fluid mixtures in microgravity environment, where sedimentation and convection do not affect the mass flow induced by the Soret effect. First, the experiments performed on binary mixtures in the IVIDIL and GRADFLEX experiments are described. Then, further experiments on ternary mixtures and complex fluids performed in DCMIX and planned to be performed in the context of the NEUF-DIX project are presented. Finally, multi-component mixtures studied in the SCCO project are detailed
    corecore