View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Archivio istituzionale della ricerca - Universita di Cagliari

A semantic deconstruction of session types*

Massimo Bartoletti', Alceste Scalas', and Roberto Zunino?

! Universita degli Studi di Cagliari, Italy — {bart , alceste.scalas}@unica.it
2 Universita degli Studi di Trento, Italy — roberto.zunino@unitn.it

Abstract We investigate the semantic foundations of session types, by
revisiting them in the abstract setting of labelled transition systems.
The crucial insight is a simulation relation which generalises the usual
syntax-directed notions of typing and subtyping, and encompasses both
synchronous and asynchronous binary session types. This allows us to
extend the session types theory to some common programming patterns
which are not typically considered in the session types literature.

1 Introduction

Session typing is a well-established approach to the problem of correctly designing
distributed applications [2002T28]. In a nutshell, the application designer specifies
the overall communication behaviour through a choreography, which enjoys
some correctness properties (e.g. safety and progress). The overall application
is the result of the composition of a set of processes, which are distributed over
the network and interact through sessions. To ensure the correctness of this
composition, the choreography is projected into a set of session types, which
abstract the end-point communication behaviour of processes: if each process is
type-checked against its session type, the composition of services preserves the
properties enjoyed by the choreography.

The usual technical tool used to prove the correctness of a behavioural type
system is subject reduction. Say P is a process, and T' is a session type. Roughly,
subject reduction guarantees that, if we have a typing judgement + P : T, then
whenever P takes a computation step P Lp , also the type can take a similar
step, i.e. there exists some 7" such that T ST and F P T

This relation between processes and types somehow resembles the simu-
lation relation in labelled transition systems (LTSs): a state T simulates a
state P iff, whenever P L p , then T 4 T', for some T’ which still sim-
ulates P’. This seems to suggest that + P : T is rooted in some kind of
“process-type simulation”. To elaborate further on this insight, consider a ses-
sion type T = la @ b, which models an internal choice between two outputs.

* Work partially supported by: Aut. Reg. Sardinia (L.R.7/07 TRICS, P.1.A.2010 Social
Glue), MIUR PRIN 2010-11 Security Horizons, EU COST Action IC1201 BETTY.

https://core.ac.uk/display/54605379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

la 7T la We can refine this session type as the pro-

cess P = la which just wants to output !a.

T b Intuitively, the process P respects the type T',

because any client who can handle both choices in T" will interact correctly with P.
Now, let us consider the LTSs of P and T (on the left): we can observe that P is
(weakly) simulated by 7', in symbols P 3 T, because each move of P is matched
by a move of T'.

7a
Let us now consider the type U = 7a & 7b, which
models an external choice between two inputs, and U
let @ = ?a+ 7b + ?c (where + is the standard CCS 7b

choice operator) which allows for an additional input “c.
Again, () respects U: any client compatible with U will not exploit the additional
choice, and will interact correctly with (). But let us look at the LTSs of () and
U (on the right): differently from the previous case, now we have that) is not
weakly simulated by U (whereas the converse U Z @) holds). This shows that
the weak simulation relation does not faithfully capture the notion of session
typing: indeed, the previous examples suggest that a hypothetical “process-type
simulation” should treat input and output capabilities differently: intuitively, it
should be covariant w.r.t. outputs and contravariant w.r.t. inputs.

A similar kind of co/contra-variance arises when dealing with subtyping. The
intuition is that if a session type 7T is subtype of U, and we have two processes
P,@Q such that - P : T and F @ : U, then P can safely “replace” @: i.e.,
each process that interacts correctly with () will also interact correctly with P.
Again, the session subtyping relations (e.g. [I8]) are covariant w.r.t. outputs and
contravariant w.r.t. inputs; moreover, they are coinductive. This suggests a link
between the subtyping relation and our hypothetical “process-type simulation”.

Several papers have studied session typing relations (e.g. [ZUSITTIT9I20/21123])
and subtype preorders (e.g. [TI2/9ITOIT2ITHTS]). Despite the variety of aims and
results, all these works share a common approach: fix some syntax for types
and/or processes, and then characterise typing/subtyping through syntaz-driven
definitions, usually in the form of a type system, or coinductive definitions (for
subtyping). This seems in slight contrast with a common principle in concurrency
theory: keeping syntax separated from semantics. Indeed, behavioural equivalences
(e.g. (bi)simulation, testing, etc.) are typically defined over arbitrary LTSs, and
then applied to calculi by providing the latter with an LTS semantics [27].

Another drawback of these syntax-driven approaches is that they do not
usually consider some common programming patterns for interactive applications.
For example, let us think about a server waiting for client’s input: typically, the
server must handle the case where such inputs do not arrive. This can be achieved
via signals/exceptions handling, or other programming language constructs. In
Erlang , for instance, one can write:

receive P; -> Bodyj...
.Pk -> BOdyk
after 10 -> Bodyr

This causes receive to be aborted if no messages matching the patterns Py,. .. Py
arrive within 10 milliseconds; in this case, Bodyris executed — where the program
may e.g. do internal actions and start receiving again. Such a program blurs
the distinction between internal/external choices: intuitively, its LTS (on the
right) has a state with external inputs 7P;,..., 7P, and an internal 7-move
abstracting the timeout. This eludes the notion of “structured communication-
based programming” at the roots of the session types approach [I9I20]; yet, it is a
use case that one would like to somehow typecheck to ensure correct interaction.

In this work, we tackle these problems by revisiting the semantic foundations of
session types, aiming for behavioural, syntax-independent relations and properties
that can be later applied to specific process calculi and programming languages.

Contributions. We study a behavioural theory of session types, aimed at unifying
the notions of typing and subtyping, including both synchronous/asynchronous
semantics. We start in §2] by setting our framework, and giving a running
example. In we define I/0 compliance as a notion of correct interaction between
behaviours, stricter than progress, albeit coinciding with it on synchronous session
types (Theorem . In §4f we introduce the I/0 simulation < between behaviours,
which is an I/O compliance-preserving preorder (Theorems [3[and , is a Gay-
Hole subtyping relation [I8] (Theorem [5), and is preserved when passing from
synchfonous to asynchronous session types semantics (Theorem @ In we show
that < induces syntax-driven type systems, which guarantee correct interaction
(Theorem . Due to space constraints, the proofs of all our statements, more
examples and discussion are available in [5].

2 Behaviours

In this section we exploit the semantic model of labelled transition systems (LT'Ss)
to provide a unifying ground for the notions developed later. We consider LTSs
where labels are partitioned into internal, input, and output actions, and we call
behaviours the states of such LTSs. Then, we exploit this model to embed three
calculi for concurrency: binary session types with synchronous or asynchronous
semantics, and asynchronous CCS. We will sometimes use these calculi to write
examples and to discuss related work, but all the main technical notions and
results do apply to the general class of behaviours.

We consider an LTS (U, A, {Z—T> | £ € A;}), where U = {p,q,...} is a set of

behaviours, A; is a set of labels, and LN C U x U is a transition relation. A, is
partitioned into input actions A” = {?a,?b, ...}, output actions A' = {!a,b,...},
and the internal action 7. We use an involution co(-) such that co(?a) = la and
co(la) = 7a. We let £,/',... range over A = A’ UA'. For a set L C A, we define
L' =LNA” and L' = LNA". For all p,q € U, we define the parallel composition
p || ¢ as the behaviour whose transitions are given by the (standard) rules:

‘. s ¢
p—p q—q p£>p’ qL()>q’

‘. A
plla—=pq plla—=pld plla =7 |ld

Figure 1: Three session behaviours.

We define the relation = as the reflexive and transitive closure of =, and
£y £, . £ PR S . 2,
= as =—=. We write p— when Jp' . p — p; we write p— when 3¢, . p—.
We write 0 to denote any p such that p/. We define the weak barbs of p as
pll = {¢ | p:£>}. Hereafter, we shall consider two behaviours equal iff their
transition graphs are isomorphic (i.e. equal up-to node renaming).

Session types. A session type is an abstraction of the behaviour of a process
interacting with its environment. Here, we use a simple version of session types
by slightly adapting those studied in [I]. Session types comprise external choice
(&) among inputs (7a), internal choice (&) among outputs (!a), and recursion.
Empty choices (of any kind) represent successful termination.

Definition 1 (Session types). Session types are terms with the syntax:
T o= KerfaiTy | D,crlai- T | recx T' | X

where (i) the set I is finite, (i1) the actions in internal/external choices are
pairwise distinct, and (ii1) recursion is guarded. We write O for the empty choice.

We present two semantics for session types: one synchronous (Def. [2)) and one
asynchronous (Def. . In both, an internal choice first commits to one of the
branches !a.T, before enabling !a. An external choice enables all its actions.

Definition 2 (Synchronous session behaviours). We denote with 8, the set
of behaviours of the form T (up-to unfolding), with transitions given by the rules:

Qg2 Ti 25T Gel) @, 5T, GeI |I|>1) laT 27

For the asynchronous semantics, we consider behaviours of the form T[o]
where o is a sequence of output actions, modelling an unbounded buffer.

Definition 3 (Asynchronous session behaviours). We denote with 8, the
set of behaviours of the form T[o] (up-to unfolding), with transition rules:

T la . 7a;
(EP'ai.Ti) o] D Tjlolay] Gen Tla.ol >Tlo] (&7%:i.Ti)lo] =2 T;ilo] (e
i€l il
The async rule for @ adds the selected output to the end of the buffer, with a
7-move. The 2°¢ rule says that an output !a at the head of the buffer is consumed
with a la-transition. The async rule for & is similar to the sync one.

Ezample 1. Let T; = la.?b @ 1a’.7b/; and Ty = 7a.(!b @ !c). Their sync/async
behaviours are shown in Figure [I| Note that T» has equal sync/async behaviours.

The following proposition shows that asynchronous session behaviours are
not more general than synchronous ones, and vice versa: e.g., considering the
session types in Example |1} we have that Ty & 8, while T[] & 8.

Proposition 1. S, €2 8.

Definition 4 (CCS). CCS terms have the following syntax:
P,Q == 0 | (P | P+Q | P|Q | X | puxP

where + is non-deterministic choice, | is parallel composition, and recursion iy P
is guarded. Like async session behaviours, async CCS semantics use a buffer [o].

Definition 5 (Async CCS semantics). We denote with P, the set of be-
haviours of the form Plo| (up-to unfolding), with transitions given by the following
rules (the symmetric ones for | and + are omitted):

lre{r}UA" la.Plo] 5 Plo.la] Plo] £ P'[o"] Plo] 5 P[]

Pl 5 Pl Plao] B Pl (P+Qo] S Pl] (PlQ)o] S (P Q)]

As in async session behaviours, an output !a is first added at the end of the
buffer, and can only be consumed from its head. Note that a behaviour cannot
consume its own buffer: | just allows for interleaving. Synchronization is obtained
with Plo] || Q[o'], i.e. using the parallel composition of LTS states: this allows
P’s input actions to consume ()’s output buffer, and vice versa.

Ezample 2. The behaviour of the async process !a.7[] is shown as|p;|in Figure
Definition 6. We define an encoding [] of session type terms into async CCS:
[D,a:.Ti] =3 1ai [Ti] [& %8 T:] =278 [ei] [reexT] = px[T] [X]=X
By Lemmall] an async session type and its encoding in async CCS are equivalent.
Lemma 1. T[] = [T]]].

Proposition [2| relates async CCS behaviours with session behaviours.

Proposition 2. §, C P, €2 S;.

An example. The following types model a bartender (B) and a client Alice (A):

Ug = recx (?aCoffee.lcoffee. X & 7aBeer.(!beer. X & Ino.X) & 7pay)
T'a = laCoffee.?coffee.!pay @ laBeer.(?beer.!pay & ?no.!pay)

The bartender presents an external choice &, allowing a customer to order either
coffee or beer, or to eventually pay; in the first case, he will serve the coffee and
then recursively wait for more orders; in the second case, he uses the internal
choice @ to decide whether to serve the beer or not — and then waits for more
orders; in the third case, after the due amount (possibly 0) is paid, the interaction
ends. Alice internally chooses between coffee or beer; in the first case, she waits
to get the coffee and then pays; in the second case, she lets the bartender choose
between serving the beer, or saying no — and in both cases, she will check out.

Intuitively, Ug and T'a are compliant, and the following processes type-check:

Qg = py (?7aCoffee.!coffee.Y + ?7aBeer. (Ibeer.Y + Ino.Y) + 7pay)
Pp = laCoffee.?coffee.lpay + l!aBeer. (?beer.!pay + 7no.!pay)

From typing and compliance, we can deduce that Pal[] || @[] synchronize and
reach the successful state O[] || O[], where they agree in stopping their interaction.
Alice may also implement a subtype of T'a only asking for coffee: T, =
laCoffee. ?coffee.!pay, with a corresponding process P, = !aCoffee.”coffee.!pay.
Note however that the subtyping step is not necessary: I’ has also type Ta.
So far, the structures of A’s and B’s processes match the structure of their
types. This is a common situation in the session types literature: processes are
usually written using calculi inheriting the structured communication approach
pioneered by Honda et al. [19)20], thus reflecting the internal/external choices of
types. However, in some cases things may be more complex. The bartender might
have other incumbencies, and may need to stop selling beer after a certain hour:

Qg = py ((?aCoffee.!coffee.Y + 7aBeer . (lbeer.Y +!no.Y) + ?pay)
+ 7.1z (?aCoffee.coffee. Z + ?aBeer.lno.Z + ?pay))

This reminds us of the small Erlang code sample given in §I} the 7 branch

represents the bartender’s decision to stop waiting for customer orders, perform
some internal duties (e.g. clean up the bar) and then serve again — this time,
refusing to sell beer. Intuitively, we would like Q to still have the type Ug, since
compliant customer processes (e.g. Alice’s one) will still be able to interact (either
before or after the 7). A process like (3, however, is usually impossible to write
(and type) using classical session calculi: their grammar does not offer a 7 prefix,
since it would allow for processes where the distinction between internal/external
choices is blurred (contrary to the expected program structure).

Let us consider another scenario: Alice is late for work. But she realises that
the bartender-customer system is asynchronous: the counter is a bidirectional
buffer where drinks and money can be placed. Thus, she tries to save time by
implementing the following type and process:

T\ = laCoffee.!pay.?coffee P} = laCoffee. (?coffee | !pay)

i.e., in her type she plans to order a coffee, put her money on the counter while B
prepares her drink, and take it as soon as it is ready; in her process, she orders a
coffee, and tries to grab the coffee with one hand, while putting the money on the
counter with the other. P represents an optimised program exploiting buffered
communication, thus diverging from the syntactic structure of T'x. Therefore, is
T\ a type for P? Is T’ compliant with Ug, and will P} interact smoothly with
Qg and Qg? We shall answer these questions later on in

3 I/0 compliance

We now address the problem of defining a relation between behaviours to guar-
antee that, when combined together, they interact in a “correct” manner. Many
different notions of correctness have been considered to this purpose in the litera-
ture, both for the binary [I2IT4ITI2] and for the multi-party settings [QUTOI3ITT].
We start by considering the classical, trace-based notion of compliance of [T4/T],
where correctness is interpreted as progress of the interaction. In Definition [7| we
say that a behaviour p has progress with ¢ (in symbols, p - ¢) iff, whenever a
T-computation of the system p || ¢ is stuck, then p has reached the final (success)
state 0. Note that this notion is asymmetric, in the sense that p is allowed to
terminate the interaction without the permission of ¢. This is intended to model
the asymmetry between the role of a client p and that of a server ¢, as in [I].

Definition 7 (Progress). We write p1q iff pll¢= 1| ¢+ implies p’ = 0.
We write p L ¢ when p4q andptq.

The following proposition states that, for session types, progress with the
synchronous semantics implies progress with the async semantics. As we shall
see, the main relations introduced in the rest of the paper will be preserved when
passing from the synchronous to the asynchronous semantics of session types.

Proposition 3. If T HU, then T[| HU].
Ezxample 3. We have the following relations:

la.?b L 7a.lb la.?b AF 7a recx la. X Ak 7a (recx la. X)[] L 7b]]
la.?b A/ b.7a (la.?b)[] L (Ib.7a)[] recx!a.X L recy?a.Y (recx?a.X)[AF b[]

The progress-based notion of correctness above also relates behaviours that allow
arguably incorrect interactions. For instance, (recy !a.X)[] 4 ?b][] holds, because
they produce an infinite 7-trace, even if they cannot synchronise. Ideally, we would
like our notion of correct interaction to be stricter, avoiding “vacuous” progress
where the client p exposes I/O capabilities, but the server ¢ cannot interact, and
p || ¢ merely advances via internal 7-transitions (without synchronisations). We
introduce a notion of compliance enjoying such a property on general behaviours
(recall from §2|that pJl' = (p)! = plk NA'):

Figure 2: Four behaviours which are not session behaviours.

Definition 8. R is an I/O compliance relation iff, when p R q:
a) pll' Cco(gl’) A ((pll! =0 AP #£0) = D#ql C 00(pii7));

co(?)

b) p £ v A g J = PR We write < for the largest 1I/O compli-

ance relation, and < for the largest sym-

)pLp = pRq metric I/O compliance relation. When
p X q, then we say that p and q are 1/O
d)¢lqd = pRq. compliant.

Definition [§] can be interpreted with the game-theoretic metaphor. Let p and
q be two players. Item @ has two conditions: by the leftmost constraint, if p
wants to do some output (possibly after some 7-moves), then ¢ must match it
with its inputs; by the rightmost constraint, if p is not going to output, but
wants to do some input, then ¢ must be ready (possibly after some 7-moves)
to do some output, and ¢ cannot have outputs other than those accepted by p.
I/O compliance must be preserved if p and ¢ synchronise or do internal moves

(items @ .

Lemma 2. 51 = > N4.

Ezample 4. Consider the behaviours in Figure [2 We have that [p7]t< [p3], [P3] ™ [Pa}
4 and o) < while all the other pairs of behaviours are not compliant.

Theorem [l|relates I/O compliance with Def. 7} If two behaviours are compliant,
then they enjoy progress. The vice versa is not true: e.g., (recx la. X)[] €4 7b][],
coherently with our desideratum that correct interactions must not progress
vacuously. < can relate async session behaviours which intuitively interact
correctly, e.g. (!a.?b)[] 5x (!b.7a)[]. Still, < and - coincide in 8.

Theorem 1. If p < q then p - q. Also, if p,q € 8, then p 4 q implies p < q.

Ezample 5. Recall the example in In the sync case, Ug L T'a, Ug < T'a,
Ug L T, and Ug 53 T". The same holds for their async versions. When Alice is
late for work, for the sync types Ug [T'X and Ug 54 T', due to the wrong order
of Alice’s actions. In the async case, instead, Ug[] L. T'x[] and Ug[] 52 T[]

Proposition [4] says that <1 is preserved when passing from sync to async session
behaviour. It refines Proposition [3] that deals with the weaker notion of progress.

Proposition 4. If T Q U, then T[] < U]].

4 I/0 simulation

In this section we introduce a simulation relation between behaviours. We start
by adapting to our framework one of the classical notions of subtyping from the
session types literature: the strong subcontract relation of [14]. A behaviour p is
a subtype of p’ iff, whenever p’ is compliant with some (arbitrary) behaviour ¢,
then p is compliant with qﬂ Thus, p can transparently replace p’, in all contexts.

Definition 9 (Subtype). C is the largest relation s.t. p C q implies Vr . q
r = piar. We write p Cg q to restrict v to the set R (i.e., Vr € R...).

Despite its elegance and generality, Def. [0] cannot be directly exploited to
establish whether two behaviours are related, due to the universal quantification
over all contexts. For session types, alternative characterisations of C have been
defined, usually in the form of a syntax-driven coinductive relation [T4T]. This
approach amounts to restricting p, ¢ and r in Def. [9] to a process calculus with
specific syntax and transition rules — e.g., p, ¢, € 8. In our semantic framework,
however, behaviours are not syntax. We shall extend these characterisations
from session behaviours to arbitrary ones, without resorting to a universal
quantification over contexts. To do that, we define an I/0 simulation relation on
behaviours, denoted by <. We show that it is a preorder (Theorem , and it
preserves I/O compliance (Theorem . < is equivalent to the subtype relation
on sync session behaviours (Theorem [5)), albeit stricter on arbitrary behaviours.

Let Q be a set of behaviours. We write ¢ = Q if 0 £Q C{¢ | ¢= ¢'}. By

extension, we write Q L " iff 3¢ €Q . ¢ L q”% and Simillarly for Q= ¢".
We write Ql for Uq/EQ ¢'ll, and similarly for QU° and QJ .

Definition 10 (I/O simulation). R is a 1/O simulation relation iff, whenever

p R q, then 3Q (called predictive set) such that ¢ = Q, and:

a)pl =0 = QI =0; ; -

b Tl A =) = pl" =0); .

Cj Sip_' pL Hq’(@é Sq A Y %ﬁq,.) We write < for t.ilze largest
Ia e L 1/0 simulation, =~ for the

d)p=p = 3¢ .Q=q¢ NP RY; largest symmetric 1/0 simu-

e) p?—a>p’ A Qg = 3¢ . Q?:a>q’ AP Rq. lation, and = for <N >.

Definition can be explained in terms of a sort of simulation game between
players p and q. At the first step, ¢ predicts a suitable choice of its internal moves,
via a set Q of states reachable from ¢. The outputs of Q must include those of p
(item7 and the inputs of Q must be included in those of p (item EZ[) Moreover,
if p has no outputs, then also Q cannot have outputs, and if Q has no inputs, then
also p cannot have inputs (items [a)llb)]). Intuitively, these constraints reflect the
usual subtyping in session types: inputs (external choices) can be enlarged (if not
empty), while outputs (internal choices) can be narrowed (but not emptied). The

3 In this paper the direction of C is opposite w.r.t. the subcontract relation in [I4].
Moreover, we require I/O compliance in each context, while [14] only requires progress.

p is in relation with ¢, ¢, match-
Tl D ing their 7a. Then, pm. v&.rants eit.her
p® (p,q) {q} to perform !b, !c or quit interacting:
@ 4 this behaviour is matched by ¢
){a } and ¢; if p* follows its 7-branch
) {q(‘”} to p'¥, the latter is related with ¢®
| (g} and ¢‘". Notice.that q'*, does not
.) stop, but enters in a 7-loop. Also no-
)| {47} | tice that p*’s predictive set has 2 el-
)
")

p 2, p» LN p®

’ Relation ‘ Pred. set

p(l)

7d T

bS]

’E

{¢'”} |ements: it cannot be {¢""}, because

otherwise p’ would not match ?d,
(8)

’E i)
Q»Q»Q»QQQ

(

(

o |(
SO e
(p"

(

{d“}
Table 1: Example of I/O simulation.

hS]

reachable via ¢

requirements above must be preserved by the moves of p. 7-moves and outputs
of p must be (weakly) simulated by some process in Q (items [¢)Hd)). The same
holds for inputs (item , but only moves shared by p and Q are considered.

Ezample 6. Detailed examples of < are shown in Table [1} and in [5].

Ezample 7. Consider Figure [3| To assess p < ¢, we choose a predictive set Q
that mandates the inputs of p, and includes its outputs (note that p has an
additional input ?c¢’ not offered by Q). The same happens with the predictive
set R, assessing ¢ < r — but R must be chosen carefully: it must include the
lower 7-branch of r, matching the branch of ¢ with a 7-loop and no further 1/0;
however, it must not include the upper 7-branch of r, which requires 7d (not
matched by ¢). Note that R and the small set inside are predictive sets for p < 7.

We now study some properties of <. Lemma ensures that Def. |10|is well-formed.
Lemma 3. Let R be a set of I/O simulations. Then, |JR is an I/0 simulation.

The followmg result relates I/O simulation with weak moves. When p < ¢,
the relation < is preserved by forward 7-moves of p and backward 7-moves of g.

Lemma 4. If p < ¢, withp = p’ and ¢ = q, then p’ < ¢'.

Figure 3: I/O simulation. @, R are the predictive sets resp. for p<qandqg<

Weak simulation (3) and I/O simulations are unrelated, i.e. < Z 3 ¢ <.
However, weak bisimulation (=) is strictly stronger than I/O bisimulation.

Theorem 2. ~ C =~

By Theorem < is a preorder, as the subtype relation. This is not quite
straightforward, due to the existential quantification on the predictive set Q.

Theorem 3. (U, <) is a preorder.

Quite surprisingly, on general behaviours progress is not preserved by <: if
p < ¢ - r, then it is not always the case that p - r. For instance, consider the
behaviours in Figure {4 It is easy to check that 5] < g and g 1 However,
APz indeed, if [p7] chooses the branch !b, then [ps|is stuck waiting for ?c.

Theorem [4] is one of our main results: it states that < preserves (symmet-
ric/asymmetric) I/O compliance. This is a further motivation for using 5 instead
of L, when dealing with behaviours where these two notions do not coincide. In
the example above, is not a sync session behaviour: were all behaviours in
Figure [4] elements of 84, we would also have preserved progress (by Theorem .

Theorem 4. p < gor = por, for o € {5,549, 4}.

I/0 simulation can be seen as a subtyping relation on general behaviours,
that is p < q allows p to be always used in place of ¢. For instance, assume that
p is an asynchronous CCS process typed with a session type g, which in turn
complies with the session type r. Then, Theorem 4| states that I/O compliance
is preserved by <, i.e. p is also I/O compliant with r, notwithstanding with the
fact that p and r are specified in different calculi (actually, our statement is even
more general, as it applies to arbitrary behaviours). Summing up, the process p
will interact correctly with any process with type r (Theorem .

Theorem [5| below states that I/O simulation is stricter than Definition @
However, the two notions coincide on synchronous session behaviours. Hence, <
can be interpreted as a subtyping relation in 8, according to [18].

Theorem 5. If p < q, then p C q. Also, if p,q € S, then p Cs.q = p <q.

Theorem |§| generalises Propositions [3| and extending to I/O simulation
the set of properties preserved when passing from a sync to an async semantics.

Theorem 6. If T oT', then T[| o T'[], for o € {<,F, L, 5,54, 4}.

?a 'b
[RN

ps < Pe - p7

Figure 4: Progress is not preserved by I/O simulation (on general behaviours).

P =P+0 P =Plo P<Q (0]

P+Q =Q+P PlQ = Q|P 1 fgf"y la.?7b.P < la| 7b.Q
o & la.1
+(@Q+R) = (P+Q+R PIQ|R = (P|Q|R RIS o rze
P=P+P P = P[uxP/x = 5 =~
+ Hx [P/x] YT P £ Q
Q=2 ca.Q PLQ
Viel.P<Q, . Viel. P,éQ I#0 - RS ins(P)Uins(Q):(/)
- CT NT
Pierlri P < Xoicibri @ Pierai-Pi < Q+1b.Q PIR< QIS
Q=2es2Q; VkeK.P, <Q
Viel.R< (2)7&191 Vi€ J\I.a; € {ai},c;

= D [ExT]
Pies (P P) + kT P < Q

Figure 5: Axioms for < in P, . ins(P) gives the set of inputs in P’s body.

a

5 Session types without types

Our treatment so far does not depend on a syntactic representation of behaviours
in U. In the resulting unifying view, there are no inherent distinctions between
processes and types: they are just states of an LTS. This allows us to define
relations between objects which morally belong to different realms: e.g. p < ¢
may relate, say, an async CCS process with a (sync or async) session type.

The price for this generalisation is (seemingly) the loss of a useful feature:
using syntax-based reasoning to check whether a process has a certain type,
without having to deal with the semantic level. In this section, we show how this
possibility can be restored in four steps: (i) choosing a process language and a
type language (with their corresponding semantics); () encoding the former in
the latter; (44) devising a sound set of axioms for <; and (4v) using these axioms
to induce syntax-based typing rules that imply (i.e.7 safely approximate) <.

In this section we give a proof-of-concept of this methodology for the case of
async CCS (%,) for processes, and async session behaviours (8,) as types. The
encoding from types to processes for step (i) is the one given in Definition @
Proceeding to step (ii), we now introduce a set of <-based relations for F,. We
shall sometimes omit generic buffers [o] appearing in processes.

Lemma 5 (“Axioms” for <). The relations in Figure@ hold.

The axioms in Lemma are mostly straightforward. [ivr] and [Ext] (with K =)
model the typical session typing rules for internal/external choices (resp. with
outputs and inputs), allowing to add inputs and remove outputs according to <.
[Ext] with K # () handles an external choice that is interrupted (with 7-moves) and
later reprised (i.e., a simple case of Erlang-style receive...after... behaviour,
seen in . [I] allows the parallel composition of behaviours, provided that they
cannot interfere badly (i.e., compete on the same inputs) along their reductions.

To ease the presentation, we focus on a fragment of async CCS (called P,")
where (a) choices are guarded, (b) | cannot appear within recursion, and (c)

in P |Q, either P’s or ’s body cannot contain inputs. Conditions (b) and (¢)
globally enforce the premises of [|), allowing us to simplify Def. [[T] below.

Definition 11. Let I' be a mapping from recursion variables to pairs of P,
terms. We define <p as the least relation between P, terms closed under the
rules obtained by replacing < with < in Fzgure@ — plus the following:

T(X) = (P, P Xr Xy, Q) G
7() (’ 2) [S-VAR] P XiuxP, @) 2 [S-REC]

X=xrQ txP <r Q

We treat the =-based relations in Figure[5 as structural congruence rules.

The rules in Def. are straightforward: [s-var] enriches the environment by
“guessing” that P < (; [s-Rec] consumes such a guess, introducing recursion.

Theorem [7|states that (P, <) is a preorder stricter than (P, <), and it is
preserved by all the operators of P, that is., +, and |. This enables us to use the

syntactic rules <, as a basis for a type system for P~ (as we will see in Def. [12] .

Theorem 7. < is a precongruence for P, and P < Q = Plo] < Q[o].

a 7

A non-obvious aspect of Definition [I1] and Theorem [7]is that, by requiring
guarded choices in P, < is preserved by + (rule [¢,]). This is not directly
matched by a corresponding property for < in P, without guarded choices,
ie. P<Q = P+ R< Q-+ R. Indeed, the latter implication is false in general,
because 7.7a.P < 7a.P, but ?b +7.7a.P £ ?b + ?a.P. A similar argument
holds for |, when arbitrary terms are put in parallel. This shows that < is not a
precongruence for P,, and gives reason for having < stricter than <.

We can now define a syntax-directed typing judgement relating P, processes
with session types. To this purpose, we exploit the encoding in Deﬁmtlon [6l

Definition 12. We write I'+ P : T iff P < [T].

Theorem [8] states the correctness of our “typing” discipline. Suppose you
have a process P with type T, and a process () with type U. If T and U are I/O
compliant, then we have that P and) are I/O compliant, too. Thus, by Theorem
we have that the behaviour P[] || Q[] enjoys progress.

Theorem 8. If = P: T, - Q : U with T[|oU[], then P[]oQ]], for o € {>,54, <}.

Proof. From Dcf . we have P < [[Tﬂ by Lemma |1} Def. |11| and Theorem
it follows P[] < T'[]. Similarly, QH UJ]. Since P < T[] o U], by Theorem 4! it
follows P[] o U[]. Since Q[< U[] o P[], then by Theorem W I we conclude Q] o P[].

Note that F P :T and F @ : U can be inferred by a syntax-driven analysis,
by the rules in Definition [[1} If 7" and U are interpreted as synchronous session
types, than we can use syntax-driven techniques (e.g. those in [I]) to deduce
T o U in the synchronous case; then, by Theorem [6] this result is lifted “for free”
to the async case. We stress that the above result is obtained just by exploiting
the properties of 1/O simulation, without explicitly proving subject reduction.

Ezample 8. From recall Alice’s type T'\ and process P’x when she is late for
work. We have the following type encoding in 7, : Ppy = [[TX = laCoffee.!pay.
?coffee. Then, by Definition [L1} we can derive + P} : T’\.

Let us now consider the bartender processes and types in Since in Exam-
ple 5| we determined that Ug 54 T, by Theorem |4 we have Qg 54 Px. Also, since
in Example [o] we show that - Qf : Ug, by Theorem [§ we have Qf, 4 PJ.

Ezample 9. From recall Qp5, Ug. We can derive - Qf : Ug.

The previous examples show that our syntax-driven rules allow to type an
Erlang-style receive...after... behaviour, featured in the bartender process.

6 Conclusions and related work

We have revisited the theory of session types from a purely semantic perspective.
We have defined a preorder < between generic behaviours, which unifies the
notions of typing and subtyping for session types, as well as their synchronous
and asynchronous interpretations. In this work we mostly focused on behaviours
arising from session types and async CCS; however, it seems that our framework
can be easily exploited to analyse the properties of other behaviours populating
U — e.g. the LTS semantics of other process calculi and programming languages.

Session types were introduced by Honda et al. in [I928)20], as a type system
for communication channels in a variant of the m-calculus. The resulting concept of
structured communication-based programming has been the cornerstone of the sub-
sequent research. In [23], session types are coupled with a “featherweight” Erlang-
like language that, however, omits the problematic receive...after... construct
described in While adapting the type system of [23] to cope with such con-
struct should be feasible, our approach allows the construction of the type system
(in our case, the rules for <) to be driven by an explicit underlying semantic
notion (the I/O simulation). In particular, we think that the syntax-based rea-
soning in §5|can be extended to deal with other language constructs, beyond the
Erlang-style receive...after... (which is treated in .

Some recent results extend the session types discipline to the multiparty
case, starting from [21I]. We expect that our approach can be extended to this
setting: some insights come from the streamlined approach of [I3], where the
authors “take a step back ... defining global descriptions whose restrictions are
semantically justified”. The plan is to extend the < relation to capture the
role of each type/process, and then to produce the syntax-based typing rules
via (partial) axiomatisation for a given calculus. We also plan to address the
orthogonal problem of multiple interleaved sessions. Two starting points are [4/26],
which both introduce type systems for ensuring liveness in this setting.

[18] studies subtyping for (dyadic) session types. This topic is reprised in [T2]
with different notions of client-server compliance (e.g., allowing the client to
terminate interaction or to skip messages). We took inspiration from these works,
aiming at a framework general enough to replicate their notions and results.

Asynchronous dyadic session types have been addressed in [24], where type
equivalence up-to buffering was defined over traces, and then approximated via
syntax-based rules. A notion of compliance among services with buffers has been
studied in [T0], which extends [9] (albeit the setting is quite different from session
types). Also [25] addresses the problem of defining compliance between service
contracts. In their weak compliance relation, finite-state orchestrators can resolve
external choices or rearrange messages in order to guarantee progress. Weak
compliance is unrelated to our I/O compliance: on the one hand, the latter cannot
rearrange messages; on the other hand, I/O compliance has no fixed bound on
the size of the buffers. For instance, let !a”" be a sequence of m !a; the async
behaviours la.?b.la*.7b*---1a" .?b" ... and !b.7a.lb*.7a”---1b".7a" .- are 1/O
compliant, but they are not weakly compliant, as orchestrators must have a finite
rank. In [22] a bisimulation is defined to relate processes communicating via
unbounded buffers. The aim of Theorem [6] is to provide for a unifying approach
to these issues, by tranferring properties from the sync to the async setting.

Several works denote the successful termination of a behaviour with a specific
transition label (e.g. v') and/or a specific state (e.g. 1 or End). In this paper, we
consider two behaviours to be I/O compliant when they synchronise until the
client (in the asymmetric case) simply stops interacting. It is easy to extend our
framework with a success label/state, thus allowing e.g. to study a testing theory
(as in [6]). For simplicity, we chose not to include it in the present work.

Our approach shares some common ground with [I4/12]: the inspiration
to [16] for the (synchronous) session types semantics, the idea of representing
processes and contracts/types in the same LTS, thus allowing for easy reasoning
about their progress/compliance properties, and the will to overcome the rigid
internal /external choices dichotomy required by session types. In [14], it is
assumed that some type system can abstract processes P, Q (expressed in any
calculus) into contracts. This type system must be “consistent” and “informative”,
by preserving some essential properties like e.g. visible actions and internal non-
determinism. A result in [I4] is that if the abstractions of P, Q are (strongly)
compliant, then P, Q will be (strongly) compliant as well. We believe that the
concept of consistent/informative abstraction could be adapted to our framework:
it would allow, e.g., to abstract rich process calculi (e.g. with value passing and
delegation) into an LTS populated with I/O sorts (like the one adopted in this
work). Beyond these general ideas, the technical developments are different: in the
strong subcontract relation of [14] there is no input/output distinction, and some
desirable subtypings do not hold, e.g. 7a & ?b £ 7a. These are restored through
a “weak” subcontract relation, exploiting filters to suitably resolve external
non-determinism. A challenging task would be that of using filters to enforce the
I/O co/contra-variance typical of session types (and embodied in <).

References

1. Barbanera, F., de’ Liguoro, U.: Two Notions of Sub-behaviour for Session-based
Client/Server Systems. In: PPDP. ACM SIGPLAN, ACM (2010)

10.

11.
12.

13.
14.
15.
16.
17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

. Barbanera, F., de’ Liguoro, U.: Loosening the notions of compliance and sub-

behaviour in client/server systems. In: ICE (2014)

. Bartoletti, M., Cimoli, T., Zunino, R.: A theory of agreements and protection. In:

POST (2013)

. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. In: FORTE

(2013)

. Bartoletti, M., Scalas, A., Zunino, R.: A semantic deconstruction of session types.

Tech. rep. (2014), http://tcs.unica.it/publications

. Bernardi, G., Hennessy, M.: Compliance and testing preorders differ. In: SEFM

Workshops (2013)

. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M., Yoshida,

N.: Global progress in dynamically interleaved multiparty sessions. In: CONCUR
(2008)

. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for

distributed multiparty interactions. In: CONCUR (2010)

. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance

and contract compliance. In: Software Composition (2007)

Bravetti, M., Zavattaro, G.: Contract compliance and choreography conformance
in the presence of message queues. In: WS-FM (2008)

Caires, L., Vieira, H.T.: Conversation types. Theor. Comput. Sci. 411(51-52) (2010)
Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A formal account of contracts
for Web Services. In: WS-FM (2006)

Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-party
session. Logical Methods in Computer Science 8(1) (2012)

Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for Web services.
ACM TOPLAS 31(5) (2009)

Castagna, G., Padovani, L.: Contracts for mobile processes. In: CONCUR (2009)
De Nicola, R., Hennessy, M.: CCS without tau’s. In: TAPSOFT, Vol.1 (1987)
Deniélou, P.M., Yoshida, N.: Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In: ICALP (2013)

Gay, S., Hole, M.: Subtyping for session types in the Pi calculus. Acta Inf. 42(2)
(2005)

Honda, K.: Types for dyadic interaction. In: CONCUR (1993)

Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: ESOP (1998)

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL (2008)

Kouzapas, D., Yoshida, N., Honda, K.: On asynchronous session semantics. In:
FMOODS/FORTE (2011)

Mostrous, D., Vasconcelos, V.T.: Session typing for a featherweight Erlang. In:
COORDINATION (2011)

Neubauer, M., Thiemann, P.: Session types for asynchronous communication. Uni-
versitét Freiburg (2004)

Padovani, L.: Contract-based discovery of web services modulo simple orchestrators.
Theor. Comput. Sci. 411(37) (2010)

Padovani, L., Vasconcelos, V.T., Vieira, H.T.: Typing liveness in multiparty com-
municating systems. In: COORDINATION (2014)

Sangiorgi, D.: An introduction to bisimulation and coinduction. Cambridge Univer-
sity Press, Cambridge, UK New York (2012)

Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE (1994)

http://tcs.unica.it/publications

	A semantic deconstruction of session types

