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Abstract. A thermal diffusion process occurring in a binary liquid mixture is accompanied by long-ranged
non-equilibrium concentration fluctuations. The amplitude of these fluctuations at large length scales can
be orders of magnitude larger than that of equilibrium ones. So far non-equilibrium fluctuations have been
mainly investigated under stationary or quasi-stationary conditions, a situation that allows to achieve a
detailed statistical characterization of their static and dynamic properties. In this work we investigate
the kinetics of growth of non-equilibrium concentration fluctuations during a transient thermodiffusion
process, starting from a configuration where the concentration of the sample is uniform. The use of a
large molecular weight polymer solution allows to attain a slow dynamics of growth of the macroscopic
concentration profile. We focus on the development of fluctuations at small wave vectors, where their
amplitude is strongly limited by the presence of gravity. We show that the growth rate of non-equilibrium
fluctuations follows a power law Rf (q, t) ∝ 1

t
as a function of time, without any typical time scale and

independently from the wave vector. We formulate a phenomenological model that allows to relate the
rate of growth of non-equilibrium fluctuations to the growth of the macroscopic concentration profile in
the absence of arbitrary parameters.

PACS. XX.XX.XX No PACS code given

1 Introduction

Diffusion processes in liquid mixtures under the action of
a temperature or concentration gradient are accompanied
by giant non-equilibrium concentration fluctuations [1,2].
These fluctuations have been extensively described and
investigated in theoretical and experimental studies per-
formed under ideal conditions, typically during a thermal
diffusion process at steady-state [1,3,4] or during quasi-
stationary processes, such as free diffusion [5–8]. A key
open question is how do the fluctuations develop in a bi-
nary liquid mixture starting from a condition of uniform
concentration and leading to a steady macroscopic con-
centration profile. The kinetics of growth of the concentra-
tion gradient under these conditions is of great relevance
for the determination of the transport coefficients of mix-
tures. A huge effort has been devoted to the development
of methods suitable to determine the time evolution of the
macroscopic concentration gradient in multi-component
mixtures. This includes the recent development of molec-
ular dynamics simulations, which have been used to de-
termine the transport coefficients during a thermodiffu-
sion process in a binary mixture [9]. Of particular rele-
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vance is the investigation of the transport coefficients of
ternary mixtures in the absence of gravity on the Interna-
tional Space Station (ISS), performed in the framework of
the SODI-DCMIX project of the European Space Agency
[10–13].

Conversely, so far the investigation of the growth of
fluctuations during the development of the macroscopic
state has been very limited. A theoretical model based on
Fluctuating Hydrodynamics provides an effective descrip-
tion of the statistical properties of the non-equilibrium
fluctuations (NEFs) for systems where the macroscopic
state changes much slower than the fluctuations [14]. More-
over, recent simulations [15] describe the onset of non-
equilibrium fluctuations induced by thermophoretic diffu-
sion in microgravity, predicting a spinodal-like growth [16–
19] of the fluctuations, leading to a peaked structure fac-
tor with scale invariance at large wave vectors. A difficulty
in investigating transient diffusion processes on Earth is
that gravity strongly affects the behaviour of long wave-
length fluctuations, limiting their amplitude below a typi-
cal cut-off size, and making it difficult to observe a peaked
structure factor. In principle the effect of gravity can be
reduced by using a thin sample [20], but this choice limits
the amplitude of the light scattered by non-equilibrium
fluctuations, thus making difficult to characterize them
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during a transient diffusion process. Of course another op-
tion is to perform experiments in microgravity conditions
and this is one of the purposes of the Giant Fluctuations
(formerly NEUF-DIX) project of ESA [21]. The present
work performed on earth is intended as preliminary to
the future tests in microgravity conditions. We present
the results of a study performed on Earth at the onset
of non-equilibrium concentration fluctuations induced by
the Soret effect in a solution of a polystyrene polymer in
toluene. Transient processes are usually very fast and it
is difficult to collect a sufficient amount of data to obtain
a good statistical characterization of them. As suggested
in [15], a more accurate statistics can be achieved by in-
creasing the time necessary for the development of a con-
centration gradient induced by thermophoresis. To slow
down the kinetics we chose to use a solution of a high
molecular weight polymer. The concentration of polymer
is chosen above the overlap concentration to guarantee
that the amplitude of the scattered light is large enough
to be detected.

We use a quantitative shadowgraph technique [22,6,
7], particularly effective for studying this kind of phenom-
ena due to its extremely high sensitivity at small wave
vectors. Shadowgraph relies on the detection in the near
field of the interference between the transmitted beam and
the scattered light. Depending on their wave vector, con-
centration fluctuations produce changes of the index of
refraction, which appear as modulations of light intensity
on the images. With respect to light scattering, Shadow-
graph makes it possible to directly visualize the sample,
but also to recover the structure factor from the images,
collecting light at small wave vectors q without problems
of stray light rejection and alignment that affect small
angle light scattering. The only disadvantage of the tech-
nique is the presence of a strongly q-dependent transfer
function, which usually requires a precise calibration to
determine the static structure factor of the fluctuations
(See for example ref [23]).

In this work we have focused our attention on the study
of the kinetics of growth of non-equilibrium concentration
fluctuations. As we will show, the method that we have
used allows to get rid of the shadowgraph transfer function
without performing calibration measurements.

We will show that the growth rate of concentration
fluctuations exhibits a nearly q-independent power law be-
haviour Rf (t) ∝ t−α, at variance with the diffusive growth
of the amplitude of the concentration modes c(q, t) ∝
1 − exp(−Dq2t), whose characteristic time strongly de-
pends on the wave vector.

2 Non-equilibrium fluctuations in diffusion
processes

NEFs play a fundamental role in all diffusive processes
[1] due to the fact that they perturb significantly the
macroscopic state. Indeed, it can be shown that the mi-
croscopic mass flows generated by non-equilibrium fluc-
tuations are responsible for the Fickean diffusive mass

transfer [24]. Moreover, it has been predicted recently that
non-equilibrium fluctuations can significantly modify the
interactions between macroscopic bodies embedded in a
fluid [25–29], a result that has not yet been confirmed ex-
perimentally. Linearized fluctuating hydrodynamics gives
a quite complete theoretical description of NEFs in bi-
nary liquid mixtures when ideal conditions are realized,
as for example stationary states, small gradients, and di-
luted systems [1,30–33]. Theoretical work provided evi-
dence that the non-equilibrium fluctuations are long range
correlated, their static structure factor diverging as q−4 as
the wave vector q goes to zero. At large wave vectors the
fluctuations relax diffusively and they are not affected by
gravity. However, at small wave vectors gravity frustrates
fluctuations, because at these length scales buoyancy de-
termines a faster relaxation than diffusion [34]. The sepa-
ration between these two regimes of relaxation is reflected
by the presence of a roll-off in the static structure fac-
tor of the non-equilibrium fluctuations at the roll-off wave
vector [14]:

qRO =

(
βg∇c
νD

) 1
4

(1)

where g is the acceleration of gravity, c is the weight
fraction of the denser component ν the kinematic viscosity,
D the diffusion coefficient and β the solutal expansion
coefficient. For q < qRO the structure factor is almost
constant. These predictions found confirmation in many
experiments performed on Earth [3,4,6,7,35–39]

Further experiments allowed to establish that under
microgravity conditions the only limit to the growth of
non-equilibrium fluctuations is determined by the size of
the cell containing the sample, which imposes a finite size
limit [23,15,40]. Notwithstanding the good understanding
of non-equilibrium fluctuations at steady state in the lin-
ear regime, recent experiments have shown that a deeper
understanding of non-equilibrium fluctuations under more
general conditions would be highly desirable [8,15,41,42].

Our attention is focused on the determination of the
kinetics of growth of the concentration fluctuations’ modes
during the transient leading to a stationary state and
on the comparison of the results with theoretical predic-
tions and preliminary experimental data [14,15]. Start-
ing from a condition where the concentration is uniform,
non-equilibrium fluctuations can be induced by taking ad-
vantage of a thermodiffusion process. When a tempera-
ture gradient ∇T is suddenly applied to a liquid mix-
ture, previously kept at fixed temperature, a mass flow
j = −ρD[∇c+ ST c(1− c)∇T ] is induced due to Soret ef-
fect, until a steady state is reached when a macroscopic
constant concentration gradient∇cSoret = −ST c(1−c)∇T
is formed inside the sample. Assuming that the system is
in a stable configuration, as it occurs for example by heat-
ing from above a sample with a positive Soret coefficient
ST , it is possible to describe how the concentration profile
evolves in time, writing it as a function of the dimension-
less height ζ = z/a and time t [14,43] (Fig.1) :
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Fig. 1. Time evolution of the concentration profile plotted vs
the normalized height ζ in a thermal diffusion process. Con-
centration profiles have been obtained numerically from Eqn.
2

.

c(ζ, t) = c0 + a∇cSoret
{

1

2
− ζ − 2

π2

∞∑
j=1

1

j2
[1− (−1)j ]

× cos(jπζ)exp

(
−j

2π2D

a2
t

)}
(2)

where z is the vertical coordinate, a is the vertical
thickness of the sample and c0 is the initial uniform con-
centration. Theory and preliminary experiments performed
on Earth show that during a transient thermal diffusion
process the static structure factor maintains the same fea-
tures observed at steady state, namely a q−4 decay at large
q vectors and a roll-off at smaller wave vectors. The for-
ward amplitude, proportional to the difference between
the concentrations at the two cell boundaries ∆c (see Fig.
1) increases in time. On the contrary, the roll-off position
is almost stationary, because it depends on the magnitude
of the concentration gradient near the boundaries, which
reaches the steady-state almost immediately after the be-
ginning of the process [14].

A different behavior is predicted for measurements per-
formed under microgravity conditions starting from a con-
figuration where the concentration is uniform [15]. In the
absence of buoyancy driven effects, the structure factor is
expected to exhibit a peak at finite wave vector that moves
in time to smaller q vectors, while its amplitude increases.
This behaviour is strongly reminiscent of that observed
during spinodal decomposition processes, where a dom-
inant mode in the concentration flutuations depends on
the fact that the process is driven by a negative diffusion
coefficient [16–18,15]. For the growth of NEFs, however,
the presence of a dominant mode in the fluctuations is
originated by the competition between the diffusive and

Soret fluxes [15]. During the transient, the mass flow is
dominated by the Soret flux, which gives rise to a par-
tial demixing of the sample, a situation that mirrors, at
least qualitatively, the demixing process occurring during
a spinodal decomposition. Some preliminary results col-
lected in microgravity show fair agreement with the the-
oretical predictions [15]. However, in order to confirm the
presence of a peak at small wave vectors, further efforts
are required.

3 Material and methods

The cell is formed by two sapphire windows pressed against
an o-ring gasket, 26 mm inner diameter, delimiting the
sample volume, while two spacers of thickness 1.3 mm
placed between the windows guarantee a well defined sam-
ple thickness. The sample is thermalized using two ring
shaped Peltier elements thermally coupled to the win-
dows, and controlled through two Proportional-Integral-
Derivative servo-controls with an accuracy of 0.01 ◦C.

Two needles inserted in the o-ring allow to fill the cell.
In filling the cell it is important to carefully remove any
residual air, as the presence of bubbles strongly affects
the thermal transport through the sample. The filled cell
is carefully leveled horizontally, after checking that all the
optical components are well aligned along the vertical op-
tical axis of the setup.

The onset of the fluctuations is a quite elusive pro-
cess and in order to study it, it is very important to
slow down the kinetics of the process. For this purpose
we chose to use a polymer with large molecular weight.
Mw = 7.06 × 105 g mol−1. The polymer is diluted in
toluene with a mass fraction w = 0.02, corresponding to
a concentration c0 = 0.0173 g cm−3 (approximately three
times the overlap concentration co = 0.0057 g cm−3) and
to a collective diffusion coefficient D = 4.3×10−7 cm2s−1

[44,45]. The choice to work above the overlap concentra-
tion is dictated by the need of having a trade-off between
a slow dynamics and a significant amount of light scat-
tered by the sample. We stress that at this concentration
the collective diffusion coefficient, describing the rate at
which concentration fluctuations decay, is independent of
the molecular mass of the polymer, but is still extremely
low. Before starting a measurement cycle, the sample is
initially kept at a uniform temperature of 25 ◦C for some
hours to reach an equilibrium state. To avoid convective
motions caused by small residual gradients, we impose a
small temperature difference of 0.1 ◦C between the two
Peltier elements, with the above temperature higher than
the below one. We collect images of the sample in the
equilibrium state (200 frames at a rate of 1 s−1 ) to char-
acterize the camera background.

The measurement cycle is started by applying a tem-
perature difference ∆T = 20 ◦C, heating the upper face
at 35 ◦C, and cooling the lower one at 15◦C. After the im-
position of a temperature difference between the sapphire
windows, a constant temperature gradient develops inside
the cell with a characteristic time much faster than the
one needed to attain a steady concentration profile. This
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is due to the fact that the thermal diffusivity of the sam-
ple is two orders of magnitude smaller than its diffusion
coefficient. We can estimate a time τ ≈ 100 s for the devel-
opment of the thermal gradient. The sample has a positive
Soret coefficient ST = 0.238 K−1 [44], and therefore the
mass flux is in the direction of the colder temperature,
with stabilizing effect with respect to convective motions.
When the steady state is approached, the mass flux van-
ishes leading to a constant concentration gradient ∇cSoret
across the whole cell . We can estimate the time necessary
for the system to reach the stationary state to be about
τ = a2/π2D ≈ 11.5 hours.

We study the fluctuations with a highly sensitive shad-
owgraph technique [7,23] whose setup is very simple, easy
to align and extremely versatile. The light source is a
super- luminescent diode (SLD) Superlum SLD 261-MP
with wavelength λ = 670 µm and bandwidth (FWHM) of
7.5 nm. This source is definitely more suitable for a shad-
owgraph experiment than a laser, as the larger bandwidth
prevents fringe formation coming from the interference of
beams reflected by optical surfaces. The SLD is coupled to
a monomode fiber. An achromatic doublet placed before
the sample cell collimates the diverging beam coming out
of the fiber.

A second lens placed above the cell images a plane
at a distance of 41 cm from the sample onto a scien-
tific CMOS detector (IDT NX4-S1) 13.9 mm × 13.9 mm
with a resolution of 1024×1024 pixels. The image param-
eters are carefully calibrated to give the exact correspon-
dence between pixels and lengths in real space. One ad-
vantage of the shadowgraph diagnostics is that the scat-
tered light is superimposed with the transmitted beam
onto the sensor, which receives all the light coming from
the cell falling inside the solid angle subtended by the
sensing area. The transmitted beam acts as a local oscil-
lator and interferes both with the scattered and the stray
light coming from spurious reflections, imperfections in
the optics, or dust particles along the optical path. As a
results, the intensity of the light collected by the detector
is linearly related to the amplitude of the scattered field
I(x, t) ∝ |E0|2 + 2Re {E0E

∗
s (x, t)}, where E0 is the am-

plitude of the transmitted field and Es(x, t) the scattered
field. After the imposition of the temperature gradient to
the sample, we start acquiring a series of 900 shadow-
graph images with a sampling period of 4s. Each shad-
owgraph image contains several contributions to the scat-
tered field Es(x, t): a static background EB(x), equilib-
rium temperature fluctuations ETe(x, t), equilibrium con-
centration fluctuations Ece(x, t), non-equilibrium temper-
ature fluctuations ETne(x, t), non-equilibrium concentra-
tion fluctuations Ecne(x, t) and a dynamic background due
to the camera noise ED(x, t). All the dynamic terms have
zero mean.

The average of a set of images I0(x) = 〈I(x, t)〉t al-
lows to recover the background term EB(x), which can be
eliminated from each image by subtraction so to obtain
the normalized intensity distribution [15]:

i(x, t) =
I(x, t)− I0(x)

I0(x)
(3)

Fig. 2. Time evolution of the variance of shadowgraph images
on non-equilibrium concentration fluctuations. The dashed line
represents the theoretical time evolution of the concentration
difference across the sample obtained from Eqn. 5 using the ref-
erence value of the diffusion coefficient D = 4.3×10−7 cm2s−1.
The solid line is the best fit of the experimental data with Eqn.
5, yielding a value of the diffusion coefficient 2.5 times larger
than the reference one.

4 Results and discussion

A first information on the growth of non-equilibrium fluc-
tuations can be obtained from the time evolution of the
variance of the shadowgraph images of the fluctuations
(Fig. 2) var[i(x, t)], which is proportional to the integral
of the scattered light over the solid angle subtended by
the detector

var [i(x, t)] =
∑
x

i(x, t)2

N
∝

var [ETne(x, t)] + var [Ecne(x, t)] + var [ED(x, t)] .

(4)

Here we have omitted the contributions due to equilib-
rium fluctuations because under the conditions of interest
for our experiment their amplitude is much smaller than
that of non-equilibrium fluctuations and can thus be ne-
glected. Following the initial phase where the temperature
profile reaches a steady state, the signal starts growing un-
til it finally reaches a plateau. The growth of the variance
of the scattered light provides a first evidence of the emer-
gence of the non-equilibrium fluctuations in an originally
unperturbed sample. A first question that arises is how the
growth of the fluctuations is related to the development
of a macroscopic concentration profile, starting from an
originally uniform concentration. As we will see shortly, a
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meaningful parameter reflecting the growth of the macro-
scopic state is the concentration difference ∆c(t) gener-
ated by the Soret flow across the sample. This quantity
can be calculated theoretically from Eqn. 2:

∆c(t) = c(0, t)− c(1, t) =

= a∇cSoret
{

1− 4

π2

∞∑
j=1

1

j2
[1− (−1)j ]× exp

(
−j

2π2D

a2
t

)}
(5)

From Fig. 2 one can appreciate that the growth of
∆c(t) is in good agreement with the growth of the vari-
ance of the shadowgraph images, the only free parameter
being a multiplicative constant. Therefore, the variance of
the non-equilibrium fluctuations at the large length scales
where the fluctuations are strongly affected by gravity is
intimately related to the dynamics of growth of the con-
centration difference, which in turn allows the determina-
tion of the diffusion and Soret coefficient. Although the
results are very preliminar, this approach, when properly
developed, could represent a suitable alternative to Mach-
Zehnder Interferometry, Electronic Speckle Pattern Inter-
ferometry or Beam Deflection to recover the transport co-
efficient of a binary liquid mixture during a thermodiffu-
sion experiment.

A more refined assessment of the kinetics of growth
of non-equilibrium fluctuations involves the determination
of their structure factor, which is directly related to the
structure factor of the shadowgraph images SS(q, t), where
q is the transferred wave vector:

SS(q, t) = T (q)[ST (q, t) + Sc(q, t)] + SD(q, t) (6)

where ST (q, t) and Sc(q, t) are the power spectra of
temperature and concentration fluctuations respectively,
SD(q, t) is the power spectrum of the dynamic camera
noise and T (q) is the transfer function of the shadowgraph
method [7,23,15,46]

In order to compare our results with the data pre-
sented in Ref. [15] we study the structure factor of the
images at various time. To get rid of the contribution of
the temperature fluctuations and of the dynamic camera
noise we evaluate the power spectrum S0(q) of the shadow-
graph images grabbed about 100s after the imposition of
the gradient. Due to the large separation of the timescales
for the growth of fluctuations, after this time the tem-
perature fluctuations are fully developed, while the con-
centration fluctuations have barely started to grow and
S0(q) = T (q)ST (q, t) + SD(q, t). The subtraction of S0(q)
from SS(q, t) allows to isolate the contribution of non-
equilibrium fluctuations, (Fig. 3):

SS(q, t)− S0(q) = T (q)Sc(q, t) (7)

From Fig. 3 we observe that the structure factor grows
rapidly in the first hour, and slows down during the fol-
lowing part of the process. To characterize the transient
regime we analyzed, for various runs, the first 900 images

Fig. 3. Time evolution of the static structure factor
T (q)Sc(q, t) of non-equilibrium concentration fluctuations
taken during the transient phase. The first curve (lower one)
is taken at t = 180 s after the imposition of the temperature
gradient, while the last one at t = 3600 s. The solid vertical
line shows the theoretical roll-off wave vector qRO at steady
state.

collected every 4 seconds after applying the temperature
difference across the cell.

The typical oscillations due to the shadowgraph trans-
fer function are visible, superimposed to the static struc-
ture factors [40]. As the signal due to non-equilibrium
concentration fluctuations is very small during the early
stages of growth, data are particularly noisy at small wave
vectors, and it is difficult to make any statement on the
presence of a peak predicted in Ref. [15].

From Eqn. 1, we can estimate the steady state roll off
for our sample to be qRO = 334 cm−1 (being β = 0.373,
ν = 4.91 × 10−2 cm2/s , ∇cSoret = 0.71 cm−1, and
D = 4.3 × 10−7 cm2s−1). Its position is made evident
in Fig. 3 with the straight vertical line. qRO seems slightly
underestimated with respect to the actual roll off posi-
tion for all the curves. Actually Eqn. 1 is obtained in the
hypothesis of dilute samples and at the stationary state,
when a constant gradient is present in the cell, and a ver-
tical displacement of a volume of sample creates a density
mismatch.

The time evolution of the structure factors shown in
Fig. 3 is directly related with the evolution of the variance
of shadowgraph images shown in Fig. 2. More in detail,
the integral of the structure factor at a given time over
the accessible q−range is directly proportional to the vari-
ance of the shadowgraph images. As most of the q−values
at which we collect data are well below the asymptotic
high q behaviour, we notice that the integral of S(q) is
simply proportional to the forward amplitude. This ob-
servation, allows us to determine a theoretical expression
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for the growth rate of non-equilibrium fluctuations and to
compare its predictions with experimental results. Follow-
ing [14] we know that in a time dependent thermal diffu-
sion process, the forward amplitude of the structure factor
Sc(0, t), after the early stages of the thermal diffusion pro-
cess, is proportional to the concentration difference near
the boundaries of the sample cell, being:

Sc(0, t)

aSeq
=

∆c(t)

a∇cgrav
− 1 (8)

where Seq is the equilibrium static structure factor,
and ∇cgrav is the equilibrium concentration gradient in-
duced by barodiffusion.

Using Eq. 2 and 10 we can evaluate theoretically the
growth rate of the concentration difference ∆c as

Rc(q, t) =
∆c(t+ δt)−∆c(t)

∆c(t)δt
=

=

4D
∑∞
j=1[1− (−1)j ]exp

(
−j2π2D

a2
t

)
a2
[
1− 4

π2

∑∞
j=1

1
j2 [1− (−1)j ]exp

(
−j2π2

D

a2
t

)] (9)

A similar expression can be used to evaluate the growth
rate of the structure factor on non-equilibrium concentra-
tion fluctuations shown in Fig. 3 at different wave vectors

Rf (q, t) =
SS(q, t+∆t)− SS(q, t)

[SS(q, t)− S0(q)]∆t
=

=
Sc(q, t+∆t)− Sc(q, t)

Sc(q, t)∆t

(10)

As it can be appreciated from Eqn. 10, this method for
analysing the kinetics of growth of the fluctuations allows
to get rid completely of the shadowgraph transfer function
without the need of performing calibration measurements.
In Fig. 4 we show the comparison between the time evo-
lution of the growth rate of fluctuations for different wave
vector ranges.

At variance to what expected in a diffusive process,
where the growth of the amplitude of the concentration
modes is strongly dependent on the wave vector q, being
c(q, t) ∝ [1− exp(−Dq2t)], we notice that the data for the
growth rate of non-equibrium fluctuations approximately
collapse onto the same curve, without evidence of any de-
pendence on the particular q value.

According to Eqn. 8 the structure factor of fluctuations
is proportional to the concentration difference across the
sample. This implies that the growth rate Rf (t) of the
structure factor of the fluctuations should correspond to
the growth rate Rc(t) of the concentration difference.

Figure 4 shows the superposition of the growth rate
of fluctuations and the rate theoretically calculated from
the concentration profile as indicated in Eqn. 9 and the
experimental rate of growth of non-equilibrium concentra-
tion fluctuations. The dashed line is obtained from Eq.9
without any adjustable parameters and using the nominal

Fig. 4. Time evolution of the growth rate of non-equilibrium
concentration fluctuations for different ranges of wave vectors.
The two lines are calculated using Eqn. 9 without adjustable
parameters: the dashed line with the nominal diffusion coeffi-
cient Dn while the solid line with D = 2.5Dn. One can appre-
ciate that the growth rate during the onset of the fluctuations
is independent on the diffusion coefficient, that becomes signif-
icant only at large times, as shown by the theoretical curves.

diffusion coefficient (D = 4.3 × 10−7 cm2s−1), while the
solid line is obtained using the value of the diffusion co-
efficient recovered from the fitting of the variance shown
in Fig. 2 (D = 10.8 × 10−7 cm2s−1). One can appreci-
ate that at small t the rate of growth does not show the
presence of any typical time scale and follows a power-
law behavior Rc(q, t) ∝ 1/t. This behavior is independent
from the value of the diffusion coefficient. At larger t, the
finite thickness of the sample determines a cut-off, which
strongly depends from the value of the diffusion coefficient.

The overall good agreement between the growth rates
shown in Fig. 4 allows to establish that the growth of
fluctuations at the mesoscopic scale is directly related
to the development of the concentration profile at the
macroscopic scale. A more complete and refined under-
standing of the kinetics of growth of non-equilibrium con-
centration fluctuations would require performing exper-
iments under microgravity conditions, where the ampli-
tude of non-equilibrium fluctuations at small wave vectors
is not limited by the presence of gravity. This represents
one of the main goals of the Giant-Fluctuations (NEUF-
DIX) project of the European Space Agency, which will
be hosted on the International Space Station during the
next years [21].
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