66 research outputs found

    Nuclear Level Density and γ\gamma-ray Strength Function of 67Ni^{67}\mathrm{Ni} and the impact on the i-process

    Full text link
    Proton-γ\gamma coincidences from (d,p)(\mathrm{d},\mathrm{p}) reactions between a 66Ni^{66}\mathrm{Ni} beam and a deuterated polyethylene target have been analyzed with the inverse Oslo method to find the nuclear level density (NLD) and γ\gamma-ray strength function (γ\gammaSF) of 67Ni^{67}\mathrm{Ni}. The 66Ni(n,γ)^{66}\mathrm{Ni}(\mathrm{n},\gamma) capture cross section has been calculated using the Hauser-Feshbach model in TALYS using the measured NLD and γ\gammaSF as constraints. We confirm that 66Ni(n,γ)^{66}\mathrm{Ni}(\mathrm{n},\gamma) acts as a bottleneck when relying on one-zone nucleosynthesis calculations. However, we find that the impact of this reaction is strongly damped in multi-zone low-metallicity AGB stellar models experiencing i-process nucleosynthesis.Comment: Submitted to Phys. Rev.

    Identification of high-spin proton configurations in Ba 136 and Ba 137

    Get PDF
    19 pags., 11 figs., 3 tabs.The high-spin structures of Ba136 and Ba137 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Ba136 is populated in a Xe136+U238 MNT reaction employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and in two Be9+Te130 fusion-evaporation reactions using the High-efficiency Observatory for γ-Ray Unique Spectroscopy (HORUS) at the FN tandem accelerator of the University of Cologne, Germany. Furthermore, both isotopes are populated in an elusive reaction channel in the B11+Te130 fusion-evaporation reaction utilizing the HORUS γ-ray array. The level scheme above the Jπ=10+ isomer in Ba136 is revised and extended up to an excitation energy of approximately 5.5 MeV. From the results of angular-correlation measurements, the Ex=3707- and Ex=4920-keV states are identified as the bandheads of positive- and negative-parity cascades. While the high-spin regimes of both Te132 and Xe134 are characterized by high-energy 12+→10+ transitions, the Ba136E2 ground-state band is interrupted by negative-parity states only a few hundred keV above the Jπ=10+ isomer. Furthermore, spins are established for several hitherto unassigned high-spin states in Ba137. The new results close a gap along the high-spin structure of N<82 Ba isotopes. Experimental results are compared to large-scale shell-model calculations employing the GCN50:82, Realistic SM, PQM130, and SN100PN interactions. The calculations suggest that the bandheads of the positive-parity bands in both isotopes are predominantly of proton character.Furthermore, we express our thanks to Dr. E. Teruya and Dr. N. Yoshinaga from Saitama University, Japan, for providing the results of their shellmodel calculation with the PQM130 interaction. The research leading to these results has received funding from the German BMBF under Contracts No. 05P15PKFN9 TP1 and No. 05P18PKFN9 TP1, from the European Union Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 262010 - ENSAR, from the Spanish Ministerio de Ciencia e Innovación under Contract No. FPA2011-29854- C04, from the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2014-57196-C5, and from the UK Science and Technology Facilities Council (STFC). L.K. and A.V. thank the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS) for financial support. One of the authors (A. Gadea) has been supported by the Generalitat Valenciana, Spain, under Grant No. PROMETEOII/2014/019, and EU under the FEDER program

    Decay studies in the A ∼ 225 Po-Fr region from the DESPEC campaign at GSI in 2021

    Get PDF

    High-spin structures in Xe 132 and Xe 133 and evidence for isomers along the N=79 isotones

    Get PDF
    The transitional nuclei Xe132 and Xe133 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in Xe136+Pb208 MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the Xe136+Pt198 MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a Te130(α,xn)Xe134-xn fusion-evaporation reaction employing the HORUS γ-ray array at the University of Cologne. The high-spin level schemes are considerably extended above the Jπ=(7-) and (10+) isomers in Xe132 and above the 11/2- isomer in Xe133. The results are compared to the high-spin systematics of the Z=54 as well as the N=78 and N=79 chains. Furthermore, evidence is found for a long-lived (T1/2â‰1μs) isomer in Xe133 which closes a gap along the N=79 isotones. Shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features

    Who Uses Financial Reports and for What Purpose? Evidence from Capital Providers

    Full text link

    Isomers and high-spin structures in the N

    Get PDF
    The high-spin structures and isomers of the N=81 isotones 135Xe and137Ba are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in 136 Xe+238 U and (ii) 136 Xe + 208 Pb MNT reactions employing the high-resolution Advanced Gamma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (iii) in the 136 Xe+ 198PtMNT reaction employing the γ-ray array GAMMASPHERE in combination with the gas-detector array CHICO, and (iv) via a 11 B+130Te fusion-evaporation reaction with the HORUS γ-ray array at the University of Cologne. The high-spin level schemesof 135Xe and 137 Ba are considerably extended to higher energies. The 2058-keV (19/2−) state in 135 Xe is identified as an isomer, closing a gap in the systematics along the N=81 isotones. Its half-life is measured to be 9.0(9) ns, corresponding to a reduced transition probability of B(E2,19/2−→15/2−)=0.52(6 ) W.u. The experimentally deduced reduced transition probabilities of the isomeric states are compared to shell-model predictions. Latest shell-model calculations reproduce the experimental findings generally well and provide guidance to the interpretation of the new levels

    High-spin structure in the transitional nucleus 131Xe:Competitive neutron and proton alignment in the vicinity of the N = 82 shell closure

    Get PDF
    International audienceThe transitional nucleus Xe131 is investigated after multinucleon transfer in the Xe136+Pb208 and Xe136+U238 reactions employing the high-resolution Advanced γ-Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and as an elusive reaction product in the fusion-evaporation reaction Sn124(B11,p3n)Xe131 employing the High-efficiency Observatory for γ-Ray Unique Spectroscopy (HORUS) γ-ray array coupled to a double-sided silicon strip detector at the University of Cologne, Germany. The level scheme of Xe131 is extended to 5 MeV. A pronounced backbending is observed at ℏω≈0.4MeV along the negative-parity one-quasiparticle νh11/2(α=−1/2) band. The results are compared to the high-spin systematics of the Z=54 isotopes and the N=77 isotones. Large-scale shell-model calculations employing the PQM130, SN100PN, GCN50:82, SN100-KTH, and a realistic effective interaction reproduce the experimental findings and provide guidance to elucidate the structure of the high-spin states. Further calculations in Xe129−132 provide insight into the changing nuclear structure along the Xe chain towards the N=82 shell closure. Proton occupancy in the π0h11/2 orbital is found to be decisive for the description of the observed backbending phenomenon

    Development of the multi-purpose Cologne Compact Differential Plunger (CoCoDiff) for the measurement of nuclear level lifetimes with the Recoil Distance Doppler-shift method

    No full text
    A new 3-foil plunger device, the Cologne Compact Differential (CoCoDiff) plunger has been built and commissioned. Due to its compact size, it can be used together with many different spectrometers and auxiliary detectors. As a commissioning experiment, level lifetimes of the 2+1 and the 4+1 excited states of 50Cr have been measured, using the Differential Decay Curve method (DDCM). A derivation is given on how this method can be applied to a differential plunger measurement, in order to measure distances for lifetimes from two different regions of sensitivity at the same time. The commissioning experiment took place at the Cologne FN tandem accelerator, using the reaction 24Mg(32S,4p2n)50Cr. Lifetimes, deduced from this measurement, agree well with literature values from earlier measurements
    corecore