UWS Academic Portal

High-spin structure in the transitional nucleus 131Xe

Kaya, L.; Vogt, A.; Reiter, P.; Siciliano, M.; Birkenbach, B.; Blazhev, A.; Coraggio, L.; Teruya, E.; Yoshinaga, N.; Higashiyama, K.; Arnswald, K.; Bazzacco, D.; Bracco, A.; Bruyneel, B.; Corradi, L.; Crespi, F.C.L.; de Angelis, G.; Eberth, J.; Farnea, E.; Fioretto, E.; Fransen, C.; Fu, B.; Gadea, A.; Gargano, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Hadyska-Klk, K.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Itaco, N.; John, P.R.; Jolie, J.; Jungclaus, A.; Korten, W.; Leoni, S.; Lewandowski, L.; Lunardi, S.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatovi, T. ; Montagnoli, G.; Montanari, D.; Müller-Gatermann, C.; Napoli, D.; Podolyák, Zs.; Pollarolo, G.; Pullia, A.; Queiser, M.; Recchia, F.; Rosiak, D.; Saed-Samii, N.; ahin, E.; Scarlassara, F.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Smith, J.F. ; Söderström, P.-A.; Stefanini, A.M.; Steinbach, T.; Stezowski, O.; Szilner, S.; Szpak, B.; Ur, C.; Valiente-Dobón, J.J.; Wolf, K.; Zell, K.O.
Published in:
Physical Review C

DOI:

10.1103/PhysRevC.98.014309

Published: 06/07/2018

Document Version

Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Kaya, L., Vogt, A., Reiter, P., Siciliano, M., Birkenbach, B., Blazhev, A., ... Zell, K. O. (2018). High-spin structure in the transitional nucleus 131 Xe : Competitive neutron and proton alignment in the vicinity of the $\mathrm{N}=82$ shell closure. Physical Review C, 98(1), [014309]. https://doi.org/10.1103/PhysRevC.98.014309

General rights

Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

1

High-spin structure in the transitional nucleus ${ }^{131} \mathrm{Xe}$:

 Competitive neutron and proton alignment in the vicinity of the $\mathrm{N}=82$ shell closureThe transitional nucleus ${ }^{131} \mathrm{Xe}$ is investigated after multinucleon transfer (MNT) in the ${ }^{136} \mathrm{Xe}+{ }^{208} \mathrm{~Pb}$ and ${ }^{136} \mathrm{Xe}+{ }^{238} \mathrm{U}$ reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy and as an elusive reaction product in the fusion-evaporation reaction ${ }^{124} \mathrm{Sn}\left({ }^{11} \mathrm{~B}, p 3 n\right){ }^{131} \mathrm{Xe}$ employing the HORUS γ-ray array coupled to a double-sided silicon strip detector (DSSSD) at the University of Cologne, Germany. The level scheme of ${ }^{131} \mathrm{Xe}$ is extended to 5 MeV . A pronounced backbending is observed at $\hbar \omega \approx 0.4 \mathrm{MeV}$ along the negative-parity one-quasiparticle $\nu h_{11 / 2}(\alpha=-1 / 2)$ band. The results are compared to the high-spin systematics of the $Z=54$ isotopes and the $N=77$ isotones. Large-scale shell-model calculations (LSSM) employing the PQM130, SN100PN, GCN50:82, SN100-KTH and a realistic effective interaction reproduce the experimental findings and provide guidance to elucidate the structure of the high-spin states. Further calculations in ${ }^{129-132}$ Xe provide insight into the changing nuclear structure along the Xe chain towards the $N=82$ shell closure. Proton occupancy in the $\pi 0 h_{11 / 2}$ orbital is found to be decisive for the description of the observed backbending phenomenon.

I. INTRODUCTION

46
The nuclei in the $50 \leq Z, N \leq 82$ region of the ${ }_{47}$ Segrè chart, spanning the nuclei north-west of doubly-
${ }_{48}$ magic ${ }^{132} \mathrm{Sn}$, are intriguing systems for the simultane${ }^{49}$ ous investigation of the shell structure as well as for colso lective degrees of freedom. Couplings of configurations ${ }_{51}$ involving the unique-parity high- j orbital $0 h_{11 / 2}$ with ${ }_{52}$ configurations in the $2 s_{1 / 2}, 1 d_{3 / 2}, 1 d_{5 / 2}$, and $0 g_{7 / 2}$ or-
${ }_{53}$ bitals give rise to a plethora of high-spin states. The
54 different deformation-driving properties of aligned $h_{11 / 2}$
${ }_{55}$ proton ($\gamma \approx 0^{\circ}$ in the Lund convention) or neutron
${ }_{56}\left(\gamma \approx-60^{\circ}\right)$ configurations cause both collective and non-
${ }_{57}$ collective structures [1-5]. Transitional Xe nuclei in the
${ }_{58} A \approx 130$ mass region, well described by assuming anhar-
${ }_{59}$ monic vibrations [6], are known for their softness with
so respect to γ deformation and form therefore an impor-
${ }^{6}$ tant link in the smooth evolution from spherical to de${ }_{62}$ formed shapes [7-9]. High-j couplings in the high-spin ${ }_{\text {os }}$ regime form a variety of rotational bands. Their signa-
${ }_{64}$ ture splitting ($\alpha= \pm 1 / 2$) [10] is based on the unique-
${ }_{65}$ parity $h_{11 / 2}$ neutron-hole orbital. Many of the $A \approx 130$
of nuclei show irregular yrast sequences in the high-spin
${ }^{67}$ regime, accompanied by a sudden increase of moment of
ss inertia along the ground-state band. This phenomenon ${ }^{120}$ 69 called backbending [11] is explained as a band crossing of ${ }^{122}$ 70 the ground-state band with an aligned two-quasiparticle ${ }^{12}$
${ }_{71}$ band, i.e. the quasiparticle level crossing between an un- ${ }^{12}$
72 occupied high- j intruder orbital and the most high-lying ${ }^{12}$ ${ }_{3}$ occupied orbital.
74 In the majority of cases the theoretical investigations of ${ }_{12}$ ${ }_{75}$ such systems were carried out by means of the Interacting ${ }_{127}$ 76 Boson Model (IBM) [9, 12, 13], mean-field methods [2, 14] 128 77 or the cranked shell model (CSM) [15, 16]. However, Xe 129 ${ }^{8}$ isotopes have come within reach of advanced untruncated ${ }_{130}$ shell-model calculations, providing stringent tests of the ${ }_{13}$ o predictive power and suitability of various nuclear poten- ${ }^{13}$ ${ }_{81}$ tials and models based on modern effective interactions ${ }_{133}$ 82 in this region. Is is noteworthy that only a few studies 134 ${ }_{33}$ were performed from the shell-model point of view for ${ }_{135}$ 34 the description of the backbending [17-19].

The nucleus ${ }^{131} \mathrm{Xe}$ is located in the proton midshell ${ }_{1}$ ${ }_{86}$ between the $Z=50$ shell and the $Z=64$ sub-shell ${ }_{13}$ ${ }_{87}$ closures and is five neutrons away from the $N=82$ 88 shell closure. Previous experiments on ${ }^{131} \mathrm{Xe}$ focused
s9 primarily on low-spin excitations observed after β de-
эо cay $[20-23],\left(\gamma, \gamma^{\prime}\right)[24-26]$ reactions or Coulomb exci-
${ }^{1}$ tation [27]. Like several odd-mass $50 \leq Z, N \leq 82$ o2 nuclei, ${ }^{131} \mathrm{Xe}$ exhibits a long-lived $J^{\pi}=11 / 2_{1}^{-}$isomer. ${ }_{93}$ It has a half-life of $11.84(4) \mathrm{d}$ and an excitation en94 ergy of $163.930(8) \mathrm{keV}$. The isomer has a predominant ${ }_{95} \nu h_{11 / 2}^{-1}$ character and decays via an $M 4 \gamma$ ray to the ${ }_{96} J^{\pi}=3 / 2_{1}^{+}$ground state [28]. By the end of the 1970s,

[^0] 2194.7 keV is explained as a $\nu\left(h_{11 / 2}^{-2} d_{3 / 2}^{-1}\right)$ configuration.

Backbending and upbending phenomena in the yrast bands of even-even Xe isotopes were systematically observed in ${ }^{112-130} \mathrm{Xe}[33-35]$. Figure 1 shows the evolution of the total aligned angular momentum for a given transition $I_{x}=\left(I_{x}^{i}+I_{x}^{f}\right) / 2$ with the total angular momenta 25 of the initial and final states $I_{x}^{i, f}=\sqrt{I^{i, f}\left(I^{i, f}+1\right)-K^{2}}$ versus the rotational frequency $\hbar \omega=\left(E_{i}-E_{f}\right) /\left(I_{x}^{i}-\right.$ $\left.I_{x}^{f}\right)$ [36] for Xe isotopes with masses ranging from $A=$ 117 to $A=132$ along the yrast bands [32]. The experimental total aligned angular momentum shows a smooth evolution as a function of rotational frequency $\hbar \omega$ for the lighter midshell isotopes. Towards the shell closure, backbending emerges between the $J^{\pi}=10_{1}^{+}$and $J^{\pi}=12_{1}^{+}$ states in ${ }^{122,124,126} \mathrm{Xe}$ and between the $J^{\pi}=8_{1}^{+}$and $J^{\pi}=10_{1}^{+}$states in ${ }^{128,130} \mathrm{Xe}$. This behavior is explained by the crossing of a quasi ground band and another quasis6 siband with a neutron-aligned $\nu h_{11 / 2}^{-2}$ configuration [35]. A distinct alignment is observed in the lower-mass neighbor of ${ }^{131} \mathrm{Xe},{ }^{130} \mathrm{Xe}$, where the energy difference between the $J^{\pi}=10_{1}^{+}$and $J^{\pi}=8_{1}^{+}$states is only 276 keV . In the higher-mass neighbor of ${ }^{131} \mathrm{Xe},{ }^{132} \mathrm{Xe}$, the $J^{\pi}=6_{1}^{+}$ state is still tentative and the $J^{\pi}=8_{1}^{+}$state is un2 known. Compared to the even-mass neighbors of ${ }^{132} \mathrm{Xe}$, the decay of the $J^{\pi}=10_{1}^{+}$state is remarkably hindered ($\left.T_{1 / 2}=8.39(11) \mathrm{ms}[37]\right)$. A fully-aligned $\nu h_{11 / 2}^{-2}$ two 5 neutron-hole configuration was assigned to the state [38]. The $J^{\pi}=10_{1}^{+}$state decays predominantly via an $E 3$ ${ }_{7} \gamma$ ray to the $J^{\pi}=\left(7_{1}^{-}\right)$state, competitive $E 2$ decays were not observed yet. Consequently, it is likely that the $J^{\pi}=8_{1}^{+}$state is located very close in energy to the $J^{\pi}=10_{1}^{+}$isomer, resulting in a pronounced backbend${ }^{5}$ ing. This assumption is supported by shell-model calcu152 lations [39]. To shade light on the nuclear structure of ${ }_{3}{ }^{132} \mathrm{Xe}$ around the $J^{\pi}=10_{1}^{+}$state, the high-spin struc-

Figure 1. Total aligned angular momentum against the rotational frequency $\hbar \omega$ for the yrast bands in the Xe isotopes with masses ranging from $A=117$ to $A=132$. For definitions see text. Going towards the $N=82$ shell closure, backbending occurs between the $J^{\pi}=10_{1}^{+}$and 12_{1}^{+}states in ${ }^{126} \mathrm{Xe}$ and between the $J^{\pi}=8_{1}^{+}$and $J^{\pi}=10_{1}^{+}$states in ${ }^{128,130} \mathrm{Xe}$. In ${ }^{132} \mathrm{Xe}$ the position of the $J^{\pi}=8_{1}^{+}$state is not known to date. Data extracted from Ref. [32].

54 tures of the odd-mass neighboring nuclei can be used to 191 alignment similar to ${ }^{125} \mathrm{Xe}$ [45], however, no theoretical

156 sical description within the particle-plus-rotor picture.
${ }_{157}$ In ${ }^{133} \mathrm{Xe}$ the single-particle character dominates over the
158 collective character [39].
159 For the lower odd-mass neighbors of ${ }^{131} \mathrm{Xe},{ }^{125} \mathrm{Xe}$ 160 and ${ }^{127} \mathrm{Xe}$, both low-spin structures from ${ }^{3} \mathrm{He}$ - and α 161 induced reactions [40, 41] and elaborate high-spin infor162 mation from heavy-ion reactions are available. High-spin 163 states of ${ }^{125} \mathrm{Xe}$ were studied at the OSIRIS Compton164 suppressed γ-ray spectrometer via the ${ }^{116} \mathrm{Cd}\left({ }^{13} \mathrm{C}, 4 n\right)$ 165 reaction by Granderath et al. [42] and via the ${ }_{166}{ }^{48} \mathrm{Ca}\left({ }^{82} \mathrm{Se}, 5 n\right)$ reaction by Wiedenhöver et al. [43] up ${ }_{167}$ to 8.7 MeV . Later, the level scheme and high-spin band 168 structures were significantly extended by Moon et al. [15] 169 and Al-Khatib et al. [44], respectively. The favored $170(\pi=-1, \alpha=-1 / 2)$ negative-parity yrast band built 171 on the $J^{\pi}=11 / 2_{1}^{-}$state is known up to $J^{\pi}=\left(47 / 2^{-}\right)$. 172 An alignment at a frequency of $\hbar \omega \approx 0.48 \mathrm{MeV}$ was ob173 served. Granderath et al. [42] proposed a triaxial defor174 mation in the negative-parity band according to calcula175 tions in the framework of the triaxial rotor-plus-particle 176 (TRP) model. The crossing in the $(\pi=-1, \alpha=-1 / 2)$ 177 band was assigned to an alignment of a second pair of $178 h_{11 / 2}$ neutrons according to theoretical Routhians from ${ }_{179}$ CSM calculations. The alignment of the first pair of ${ }_{180} h_{11 / 2}$ neutrons was assumed to be blocked. The findings 181 were reproduced by Moon et al. [15] who assigned the 182 negative-parity yrast band a $\nu h_{11 / 2}[523] 7 / 2$ Nilsson con183 figuration from total Routhian surface (TRS) and CSM 184 calculations.
${ }_{193}$ Going towards the $N=82$ shell closure, ${ }^{129} \mathrm{Xe}$ is the 194 last nucleus which can still be sufficiently populated by
195 means of heavy-ion reactions with stable beams heavier
196 than $A=4$. In 2016, Huang et al. [16] extended the
197 level scheme of the negative-parity ground-state band
$198(\alpha=-1 / 2)$ up to the $J^{\pi}=35 / 2_{1}^{-}$state at 5194 keV 199 utilizing a ${ }^{9} \mathrm{Be}$-induced fusion-evaporation reaction on ${ }_{200} \mathrm{a}^{124} \mathrm{Sn}$ target at a beam energy of 36 MeV . The Nils201 son configuration for the band was determined to be $202 \nu h_{11 / 2}[505] 11 / 2$. An alignment in the negative-parity 203 ground-state band was found at a crossing frequency of 204 approx. $\hbar \omega \approx 0.45 \mathrm{MeV}$. Cranked shell-model calcula205 tions predicted an alignment of two $h_{11 / 2}$ protons at ${ }_{206} \hbar \omega \approx 0.5 \mathrm{MeV}$. However, the alignment of two $h_{11 / 2}$ neu207 trons was predicted at $\hbar \omega \approx 0.27 \mathrm{MeV}$. Since the pro208 ton crossing frequency matched the experimental obser209 vation, the backbending was explained as an alignment 210 of two $h_{11 / 2}$ protons. Furthermore, particle-plus-rotor 211 model calculations suggested a triaxial deformation with ${ }_{212} \gamma \approx-30^{\circ}$ in the negative-parity ground-state band.
213 This work focuses on the hitherto unknown high-spin 214 structures above the $2518-\mathrm{keV}$ state in the negative215 parity band in ${ }^{131}$ Xe. Excited states in ${ }^{131} \mathrm{Xe}$ were 216 populated in three different experiments. Multinucleon217 transfer reactions have proved to be an efficient way 218 for the population of intermediate to high-spin states. ${ }_{219}$ The combination of the high-resolution position-sensitive 220 Advanced GAmma Tracking Array (AGATA) [46] and 221 the PRISMA magnetic mass spectrometer [47-49] at the 222 Laboratori Nazionali di Legnaro (LNL, Italy) was em${ }_{223}$ ployed to study transitions in ${ }^{131} \mathrm{Xe}$ after ${ }^{136} \mathrm{Xe}+{ }^{208} \mathrm{~Pb}$ 224 and ${ }^{136} \mathrm{Xe}+{ }^{238} \mathrm{U}$ multinucleon transfer. Furthermore, ${ }_{225}{ }^{131} \mathrm{Xe}$ was populated in a ${ }^{124} \mathrm{Sn}\left({ }^{11} \mathrm{~B}, p 3 n\right){ }^{131} \mathrm{Xe}$ fusion226 evaporation reaction employing the High-efficiency Ob227 servatory for γ-Ray Unique Spectroscopy (HORUS) [50]
at the Institute of Nuclear Physics, University of Cologne. 279 The γ-ray array was coupled to a double-sided silicon strip detector (DSSSD) [51] for the detection of evaporated protons.

This paper is organized as follows: the experimental ${ }_{28}$ setup and data analysis of the three experiments are de- ${ }^{28}$ scribed in Sec. II, followed by the experimental results in ${ }^{28}$ Sec. III. A comparison with results from modern shell- 285 model calculations is presented in Sec. IV before the pa- ${ }^{286}$ per closes with a summary and conclusions in Sec. V.

II. EXPERIMENTAL PROCEDURE AND DATA

 ANALYSISA. ${ }^{136} \mathrm{Xe}+{ }^{208} \mathrm{~Pb}$ and ${ }^{136} \mathrm{Xe}+{ }^{238} \mathrm{U}$ multinucleon transfer

Excited states in ${ }^{131} \mathrm{Xe}$ were populated in (i) a ${ }^{136} \mathrm{Xe}+29$ ${ }^{208} \mathrm{~Pb}$, and (ii), in a ${ }^{136} \mathrm{Xe}+{ }^{238} \mathrm{U}$ multinucleon-transfer ${ }^{30}$ experiment in the five-neutron stripping channel at the ${ }^{30}$ Laboratori Nazionali di Legnaro (LNL), Italy. In the ${ }^{30}$ first experiment a $6.84 \mathrm{MeV} /$ nucleon ${ }^{136}$ Xe beam, deliv- ${ }^{30}$ ered by the PIAVE + ALPI accelerator complex, impinged ${ }^{30}$ onto a $1-\mathrm{mg} / \mathrm{cm}^{2}{ }^{208} \mathrm{~Pb}$ target. The Advanced GAmma ${ }^{30}$ Tracking Array (AGATA) [46] was employed in a first 300 demonstrator configuration [52] with nine large-volume 30 electronically segmented high-purity Ge (HPGe) detec- ${ }^{30}$ tors in three triple cryostats [53] to measure γ rays from ${ }^{30}$ excited states. The array was placed at a distance of ${ }^{310}$ 18.8 cm from the target position. Details on the setup ${ }^{31}$ and data analysis are given in Refs. [54, 55]. In the sec- ${ }^{312}$ ond experiment, the PIAVE+ALPI accelerator provided ${ }^{313}$ a ${ }^{136}$ Xe beam with an energy of $7.35 \mathrm{MeV} /$ nucleon and a ${ }^{314}$ beam current of 2 pnA to subsequently bombard two dif- ${ }^{31}$ ferent ${ }^{238} \mathrm{U}$ targets with thicknesses of 1 and $2 \mathrm{mg} / \mathrm{cm}^{2}$. ${ }^{316}$ A $0.8-\mathrm{mg} / \mathrm{cm}^{2} \mathrm{Nb}$ backing faced the beam. AGATA was ${ }^{31}$ employed in its full demonstrator configuration with $15{ }^{318}$ HPGe detectors in five triple cryostats placed in the nom- ${ }^{319}$ inal position, 23.5 cm away from the target. Information 320 on the data analysis of this experiment is comprised in ${ }^{32}$ Ref. [56]. In both experiments the light projectile-like ${ }^{322}$ reaction fragments of interest were identified by the mag- ${ }^{32}$ netic spectrometer PRISMA [47-49] placed at the reac- 324 tion's grazing angle of $\theta_{\text {lab }}=42^{\circ}$ in the ${ }^{136} \mathrm{Xe}+{ }^{208} \mathrm{~Pb}{ }^{325}$ experiment and $\theta_{\text {lab }}=50^{\circ}$ in the ${ }^{136} \mathrm{Xe}+{ }^{238} \mathrm{U}$ experi- ${ }^{32}$ ment, respectively. Pulse-shape analysis of the digitized ${ }_{327}$ detector signals was applied to determine the individual 328 interaction points within the HPGe shell [57], allowing ${ }_{32}$ the Orsay forward-tracking algorithm [58] to reconstruct ${ }_{330}$ the individual γ-ray energies, determine the first inter- ${ }^{331}$ action point of the γ ray in the germanium and, thus, ${ }_{33}$ the emission angle. Together with the kinematic infor- ${ }_{33}$ mation from PRISMA, a precise Doppler correction was performed on a event-by-event basis.
cated at the Institute for Nuclear Physics, University of Cologne, impinged onto a $3-\mathrm{mg} / \mathrm{cm}^{2} 95.3 \%$-enriched ${ }^{124} \mathrm{Sn}$ target which was evaporated on a $2.7-\mathrm{mg} / \mathrm{cm}^{2}$ ${ }^{\text {nat. Ta backing. All residual reaction products were }}$
287 stopped in the target layers. γ rays from excited states
288 were measured employing the HORUS γ-ray array [50]
289 comprising 14 HPGe detectors, six of them equipped with
290 BGO Compton suppression shields. The detectors are
291 positioned on the eight corners and six faces of a cube ge-
292 ometry. The count rate of the individual HPGe crystals
293 was maintained around 18 kHz during the experiment.
294 Compared to preceding α-induced reactions [29-31]
$295 \mathrm{a}{ }^{11} \mathrm{~B}$ beam is better suited for the population of the 296 high-spin regime. Nevertheless, at a beam energy of 29754 MeV , several fusion-evaporation codes compute the 298 relative cross section for the population of ${ }^{131} \mathrm{Xe}$ to be in the range of less than 1%. A detection of evaporated 0 charged particles is imperative to cope with the large 1 background emerging from the dominating ${ }^{131,130}$ Cs neu2 tron evaporation channels. By setting a gate on evap3 orated charged particles, the peak to background ratio ${ }^{2}$ for the $p 3 n$ channel ${ }^{131} \mathrm{Xe}$ can be enhanced significantly. 5 For this reason, evaporated charged particles were de6 tected with an annular double-sided silicon strip detector 7 (DSSSD) mounted at backward direction covering an angular range from 118° to 163° with respect to the beam 9 axis. The $310-\mu \mathrm{m}$ thick silicon disk was produced by RADCON Ltd. (Zelenograd, Russia) and mounted and bonded onto printed circuit boards at the University of 2 Lund, Sweden. The active detector area is divided into 34 radial segments (sectors) on the p-type junction side 4 and into 32 annular segments (rings) on the ohmic n-side 5 facing the target. Each two adjacent ring signals were 6 merged together and read out, in order to distribute the 732 rings to a total of 16 data acquisition channels. Furs ther information and a detailed characterization of the detector are given in Ref. [51]. The DSSSD was shielded against backscattered beam particles by a $25-\mu \mathrm{m}$ thick tantalum sheet held in place by a $3-\mu \mathrm{m}$ Tesa ${ }^{\circledR}$ adhesive 2 applied onto a $2-\mu \mathrm{m}$ polyethylene terephthalate carrier foil [59]. The thickness of the Ta sheet was chosen in such a way that only evaporated protons could reach the ${ }_{5} \mathrm{Si}$ detector disk.

Coincident events were processed and recorded uti7 lizing the synchronized $80-\mathrm{MHz}$ XIA ${ }^{\circledR}$ Digital Gamma Finder (DGF) data-acquisition system and stored to disk. The data were analyzed offline using the socov2 [60] and TV [61] codes. A total number of 1.5×10^{10} 1 prompt $\gamma \gamma$ events and 3×10^{6} proton-gated $\gamma \gamma$ events 2 were recorded. Events were sorted into (i) a general sym3 metrized two-dimensional matrix to study $\gamma \gamma$ coincidence 4 relations, (ii) two three-dimensional cubes for DSSSD${ }_{335} \mathrm{Ge}-\mathrm{Ge}$ and Ge-Ge-Ge coincidences, and (iii) a total of

6
eight group matrices each corresponding to Ge detector pairs with relative angles $\theta_{1,2} \in\{35,45,90,135,145\}$ with respect to the beam axis, and angles $\phi \in$ $\{ \pm 270, \pm 215, \pm 180, \pm, 55,0\}$ between the planes spanned by the Ge detectors and the beam axis to investigate multipolarities via angular correlations. Spins of populated states are investigated with the $\gamma \gamma$ angular-correlation code CORLEONE $[62,63]$ employing the DCO (directional correlation from oriented states) based on the phase convention by Krane, Steffen, and Wheeler [64, 65]. Different hypotheses of involved spins J_{1}, J_{2}, J_{3} and multipolemixing ratios δ_{1}, δ_{2} of two coincident γ rays in a cascade $J_{1} \xrightarrow{\delta_{1}} J_{2} \xrightarrow{\delta_{2}} J_{3}$ are evaluated in χ^{2} fits of the correlation function $W\left(\theta_{1}, \theta_{2}, \phi\right) \equiv W\left(J_{1}, J_{2}, J_{3}, \delta_{1}, \delta_{2}, \sigma\right)$ on experimental intensities in the different angular-correlation groups. The width of the distribution of the magnetic substates m, i.e. the width of the alignment distribution, was found to be constant at $\sigma=2.6$. More details on the angular-correlation analysis with CORLEONE are given in Refs. [66, 67].

The final level scheme of ${ }^{131} \mathrm{Xe}$ deduced from the three experiments is presented in Fig. 2. It is based on $\gamma \gamma$ coincidences, relative transition intensities, and an angularcorrelation analysis. Energies of γ-ray transitions and excitation energies are given in keV . Intensities of γ-ray transitions above the $J^{\pi}=11 / 2_{1}^{-}$isomeric state are extracted from the HORUS experiment and normalized to the $642-\mathrm{keV}$ transition. Newly assigned γ-ray transitions are marked with asterisks.

The beam-like Doppler-corrected singles γ-ray spectra of ${ }^{131} \mathrm{Xe}$ from the ${ }^{136} \mathrm{Xe}+{ }^{208} \mathrm{~Pb}$ and ${ }^{136} \mathrm{Xe}+{ }^{238} \mathrm{U}$ AGATA experiments are shown in Figs. 3(a) and 3(c), respectively. The corresponding Xe mass distributions are depicted in the insets Figs. 3(b) and 3(d). Random background is significantly suppressed by gating on the prompt peak in the time-difference distribution be- ${ }^{39}$ tween AGATA and PRISMA. Prominent transitions are 392 spin/parity assignments and relative in-beam intensities 394 contribution from $x n$ evaporation channels in order to of transitions in ${ }^{131} \mathrm{Xe}$, observed in both AGATA ex- ${ }^{395}$ achieve clean gating conditions for a $\gamma \gamma$ coincidence analperiments, are summarized in the right part of Tab. I. 396 ysis. The projection of the proton-gated $\gamma \gamma$ matrix is Efficiency-corrected relative in-beam intensities in Tab. I 397 shown in Fig. 3(e). Evaporation residues are identified were determined for the ${ }^{136} \mathrm{Xe}+{ }^{208} \mathrm{~Pb}$ experiment and 398 and selected in the matrix depicted in inset $3(\mathrm{f})$, where normalized to the $642-\mathrm{keV}$ transition. In total, the $\gamma-399$ the energy detected by the DSSSD is plotted versus the ray spectra exhibit eight hitherto known peaks and nine 400 HORUS γ-ray energy. Evaporated protons are expected new transitions. None of the known low-spin positive- 401 in an energy range of approx. 1 to 6 MeV . Low-energy parity excited states below $2 \mathrm{MeV}[30,31]$ were popu- 402 random coincidences are mainly caused by the deteclated. γ rays with energies of $188,389,642,810,901$ and 403 tion of low-energy δ electrons and β particles. A gate 992 keV depopulating the hitherto known positive- and 404 on proton energies larger than 1 MeV is applied; in the negative-parity states [31] above the $J^{\pi}=11 / 2_{1}^{-}$isomer 405 resulting $\gamma \gamma$ projection several transitions of the protonare clearly visible in the spectra. In addition, the de- 406 evaporation channels ${ }^{130,131} \mathrm{Xe}$ are well visible above the cays of the $J^{\pi}=21 / 2_{1}^{+}$and $17 / 2_{1}^{-}$states at energies of 407 background. Remaining contaminant transitions from Cs 444 and 794 keV are observed in the MNT experiments. 408 and Pt isotopes are marked by symbols in Fig. 3(e). The peaks at $230,473,609,634,662,671,700,915$, and 409 The intensities of the coincident γ rays in the HORUS

Figure 3. (Color online) (a) Doppler-corrected γ-ray spectrum gated on ${ }^{131} \mathrm{Xe}$ identified with PRISMA in the ${ }^{136} \mathrm{Xe}+{ }^{208} \mathrm{~Pb}$ experiment. Random background is subtracted with a gate on the prompt peak in the spectrum of time differences between AGATA and PRISMA. (c) Similar data from the ${ }^{136} \mathrm{Xe}+{ }^{238} \mathrm{U}$ experiment. Both insets (b) and (d) represent the mass spectra of the Xe isotopes obtained with PRISMA. The applied mass gates for ${ }^{131} \mathrm{Xe}$ are marked black. (e) Projection of the $\gamma \gamma$ matrix gated on evaporated protons (cf. inset (f)) obtained in the HORUS fusion-evaporation reaction ${ }^{11} \mathrm{~B}+{ }^{124}$ Sn. Remaining contaminant transitions are marked with symbols and dominant transitions from ${ }^{131} \mathrm{Xe}$ are marked with dashed lines to guide the eye.
${ }_{431} 1131 \mathrm{keV}$, observed in both AGATA experiments, are 432 coincident to the $642-\mathrm{keV}$ transition. The γ-ray tran${ }_{433}$ sitions are also in coincidence with the $810-\mathrm{keV}$ transi${ }_{434}$ tion in Fig. 4(b). Previously, a $901-\mathrm{keV}$ transition was ${ }_{435}$ placed parallel to the $3186 \mathrm{keV} \xrightarrow{992 \mathrm{keV}} 23 / 2_{1}^{+} \xrightarrow{389 \mathrm{keV}}$ ${ }_{436} 19 / 2_{1}^{+} \xrightarrow{189 \mathrm{keV}} 19 / 2_{1}^{-}$cascade, depopulating the 2518${ }_{437} \mathrm{keV}$ state. A gate on the $901-\mathrm{keV}$ transition is shown in ${ }^{438}$ Fig. 4(c). Coincidences as well as the intensity balance 439 require the newly-observed $662-, 634$ - and $1131-\mathrm{keV}$ tran440 sitions to be placed above the $2518-\mathrm{keV}$ state. Gates on 441 those newly observed transitions are shown in Figs. 4(d) 442 to $4(\mathrm{f})$. All three γ rays are mutually coincident and, ${ }_{443}$ thus, form a cascade. The intensity balance in the $\gamma \gamma$ ${ }^{444}$ projection gated on the $901-\mathrm{keV}$ transition suggests that 445 the $662-\mathrm{keV}$ transition is directly feeding the $2518-\mathrm{keV}$ 446 state. The intensity of the $634-\mathrm{keV} \gamma$-ray peak in the ${ }_{447} \gamma \gamma$-coincidence spectrum gated on 901 and 662 keV ex448 ceeds the one of the $1131-\mathrm{keV}$ line. In accordance with 449 the intensity balance, the $634-\mathrm{keV}$ transition is placed on ${ }^{450}$ top of the newly discovered state at 3180 keV to form the ${ }_{451}$ new $3814-\mathrm{keV}$ state. The $1131-\mathrm{keV}$ transition is placed on

Figure 4. Prompt HORUS $\gamma \gamma$-double and $\gamma \gamma \gamma$-triple coincidence-spectra with gates on (a) 642 , (b) 810 , (c) 901 , (d) 662 , (e) 634 , (f) 1131, and (g) $810 \& 1131 \mathrm{keV}$. Thin grey lines mark peak energies identified in both MNT experiments (see Tab. I). Coincidences are labeled by filled arrow heads.
${ }^{452}$ top of the cascade to establish a new state at $4945 \mathrm{keV} .{ }_{464}$ scheme is not feasible.
${ }_{453}$ Furthermore, the intensity balance of the three new γ
454 rays determined in the AGATA experiment confirms this
${ }_{455}$ assignment. Also the $\gamma \gamma \gamma$-triple coincidence spectrum
456 with gates on both the 810 - and $1131-\mathrm{keV}$ transitions
457 supports a placement of the transitions on top of the
$4582518-\mathrm{keV}$ state. The maximum excitation energy of ap-
${ }_{459}$ prox. 5 MeV is consistent with other populated reaction 460 channels in both AGATA@LNL experiments [39, 69, 70].
461 Unassigned γ-ray transitions observed with AGATA and
462 listed in Tab. I do not yield meaningful $\gamma-\gamma$ coincidences ${ }^{4}$
463 in the HORUS experiment. A placement in the level ${ }^{4}$
65 In the HORUS experiment spins and parities of excited
466 states are investigated utilizing the angular-correlation
467 analysis described in Sec. IIB. A fit of the theoretical
468 angular-distribution function $W\left(\theta_{1}, \theta_{2}, \phi\right)$ to the experi-
469 mental intensities of two coincident γ-ray transitions de470 duced from gates on depopulating transitions in the $\gamma \gamma$ 471 matrices related to the eight angular-correlation groups 472 are performed for each spin hypothesis. To benchmark 473 the validity of the angular correlation analysis, a fit of 474 the $13^{+} \rightarrow 12^{+} 417-\mathrm{keV}$ transition in the well popu475 lated ${ }^{130} \mathrm{Cs}$ channel is shown in Fig. 5(a). The ob-

6
tained multipole-mixing ratio $\delta_{\text {exp. }}=-0.11(4)$ reproduces the evaluated value $\delta_{\text {lit. }}=-0.14(6)$ [71]. A further benchmark angular-correlation distribution of the 810keV transition in ${ }^{131} \mathrm{Xe}$, gated on the $642-\mathrm{keV}$ transition, is shown in Fig. 5(b). The multipolarity of the $642-\mathrm{keV} \gamma$ ray is fixed to an $E 2$ character, while the spin of the 1616keV state is tested with values of $J=15 / 2,17 / 2$, and $19 / 2$. Obviously, a pure $E 2$ hypothesis yields best results. Figure 5(c) shows the angular-correlation distribution of the $901-810-\mathrm{keV}$ cascade in ${ }^{131} \mathrm{Xe}$. Spin hypotheses of $J=19 / 2,21 / 2$ and $23 / 2$ were tested for the $2518-\mathrm{keV}$ state. Overall, the $J^{\pi}=23 / 2^{-}$hypothesis matches the experimental values best $\left(\chi^{2}=1.7\right)$. The previous tentative spin-parity assignment of $J^{\pi}=21 / 2^{-}[31]$ has to be revised. Using the same method, the spin of the newly established excited state at 3180 keV is determined. The angular distribution of the $662-\mathrm{keV}$ decay is shown in Fig. $5(\mathrm{~d})$. The $J=23 / 2$ and $25 / 2$ spin hypotheses show discrepancies between the experimental and the calculated intensities in several correlation groups leading to $\chi^{2}=3.1$ and $\chi^{2}=2.9$, respectively. Based on the experimental data, a $J^{\pi}=27 / 2_{1}^{-}$assignment $\left(\chi^{2}=1.9\right)$ is most appropriate. Summarizing, there is strong evidence for an $E 2$ character of the 662 - and $634-\mathrm{keV}$ transitions. No accurate analysis of the $\gamma \gamma$ angular correlations for the weakly populated excited states at 3814 keV and 4945 keV were possible due to insufficient statistics. However, tentative spin assignments of $\left(31 / 2_{1}^{-}\right)$and $\left(35 / 2_{1}^{-}\right)$ are most probable due to isotopic systematics discussed in Sec. IV A. marked with thicker lines. The reevaluated $J^{\pi}=23 / 2_{1}^{-}$ state in ${ }^{131} \mathrm{Xe}$ is 7 keV higher in excitation energy compared to the corresponding state in ${ }^{129} \mathrm{Te}$, thus, the 2518keV state in ${ }^{131} \mathrm{Xe}$ fits the systematics of $J^{\pi}=23 / 2_{1}^{-}$ states from ${ }^{129} \mathrm{Te}$ to ${ }^{133} \mathrm{Ba}$. In contrast, the previous $J^{\pi}=21 / 2_{1}^{-}$assignment would disrupt the smooth evolution of the $J^{\pi}=21 / 2_{1}^{-}$states in the $N=77$ isotones. The newly assigned $J^{\pi}=27 / 2_{1}^{-}$state at 3180 keV is located between the excitation energies of the $J^{\pi}=27 / 2_{1}^{-}$ states in both neighboring odd-mass nuclei, which further supports the spin assignment. Also the newly assigned states at 3814 and 4945 keV fit into the systematics. Figure 6(b) compares the levels in the favored negativeparity band in ${ }^{131} \mathrm{Xe}$ from the present work with those in the odd-mass nuclei ${ }^{123-129} \mathrm{Xe}[16,43,78]$. The midshell nuclei ${ }^{123-127} \mathrm{Xe}$ exhibit excitation spectra which are rotational in character. Towards ${ }^{131} \mathrm{Xe}$ a characteristic transition to a vibrational character is observed.

The net. aligned angular momentum $i_{x}(\omega)$ for the fa-

Figure 5. (Color online) $\gamma \gamma$ angular correlations. The experimental intensities (data points) are compared to calculated angular-correlation functions (lines). (a) Fit of the 417-644keV cascade in ${ }^{130} \mathrm{Cs}$, (b) of the $810-642-\mathrm{keV}$, (c) of the 901-$810-\mathrm{keV}$, and (d) of the $662-901 \mathrm{keV}$ cascade in ${ }^{131} \mathrm{Xe}$. See text for details.
${ }_{530}$ vored negative-parity band along the odd-mass Xe iso${ }_{531}$ topes is presented in Fig. 6(c). The parameter i_{x} is de532 termined by subtracting the collective part from the to533 tal aligned angular momentum: $i_{x}=I_{x}-I_{x, \text { coll. }}$ where ${ }_{534} I_{x, \text { coll. }}=a \omega+c \omega^{3}$ follows the parametrization by Har${ }_{535}$ ris et al. [79]. For ${ }^{133} \mathrm{Xe}$ the collective Harris parametriza536 tion fails due to a non-rotational single particle char537 acter of this isotope. All Xe isotopes exhibit a pro538 nounced upbend. The crossing frequency at which the 539 alignment occurs is mass-dependent and decreases with 540 increasing mass. A delayed upbend in ${ }^{123,125}$ Xe takes 541 place at a higher frequency compared to the neighboring 542 nuclei. This behavior is explained by the Pauli blocking 543 of the first pair of $h_{11 / 2}$ neutrons [42, 43]. In ${ }^{129} \mathrm{Xe}$ a 544 pronounced upbend is found. Huang et al. [16] explained 545 the upbend by an alignment of two $h_{11 / 2}$ protons ac546 cording to CSM calculations [16]. The negative-parity

Table I. Energies, spin assignments and relative in-beam intensities for transitions observed in ${ }^{131} \mathrm{Xe}$ above the $J^{\pi}=11 / 2_{1}^{-}$ isomer at 164 keV . Fitted energies and intensities normalized to the 642 -keV transition are taken from the ${ }^{11} \mathrm{~B}+{ }^{124} \mathrm{Sn}$ fusionevaporation experiment and the AGATA ${ }^{136} \mathrm{Xe}+{ }^{208} \mathrm{~Pb}$ multinucleon-transfer experiment.

HORUS						AGATA	
$E_{\gamma}(\mathrm{keV})$	$E_{i}(\mathrm{keV})$	$E_{f}(\mathrm{keV})$	I_{i}^{π}	I_{f}^{π}	I_{γ}	$E_{\gamma}(\mathrm{keV})$	I_{γ}
189.2	1805.4	1616.2	19/2+	19/2-	29(2)	189	weak
389.2	2194.6	1805.4	$23 / 2^{+}$	19/2 ${ }^{+}$	30(4)	389	41(4)
634.0	3813.7	3179.7	$27 / 2^{-}$	23/2-	24(4)	634	36(3)
642.0	805.9	163.9	15/2 ${ }^{-}$	11/2 ${ }^{-}$	$\equiv 100$	642	$\equiv 100$
662.1	3179.7	2517.6	(31/2 ${ }^{-}$)	27/2-	32(3)	662	48(4)
810.3	1616.2	805.9	19/2-	15/2-	87.7(4)	810	78(7)
901.4	2517.6	1616.2	23/2-	19/2 ${ }^{-}$	58.6(6)	901	60(3)
991.8	3186.4	2194.6	-	23/2+	18(3)	992	25(3)
1131.2	4944.9	3813.7	$\left(35 / 2^{-}\right)$	$\left(31 / 2^{-}\right)$	15(2)	1131	29(2)
-	-	-	-	-	-	230	weak
-	2249.3	1805.4	$21 / 2^{+}$	$19 / 2^{+}$	-	444	25(2)
-	-	-	-	-	-	473	19(2)
-	-	-	-	-	-	609	weak
-	-	-	-	-	-	671	15(2)
-	-	-	-	-	-	700	12(2
-	1600	805.9	$17 / 2^{-}$	15/2-	-	794	weak
-	-	-	-	-	-	915	12(2)

band in ${ }^{131} \mathrm{Xe}$ exhibits a large increase of approx. $7 \hbar{ }_{573}$ truncated space. More details on the calculation are in aligned angular momentum, accompanied by a de- 574 given in Refs. [17, 80, 81].
crease of rotational frequency. Similar to the $-2 n$ part- ${ }_{575}$ The second calculation was carried out employing the ner, the alignment takes place at the newly established $J^{\pi}=27 / 2_{1}^{-}$state in ${ }^{131} \mathrm{Xe}$. Since the bandhead of the favored negative-parity band already shows an initial alignment of $J=11 / 2 \hbar$, the observed $h_{11 / 2}^{2}$ bandcrossing is blocked, i.e. not the fully aligned $10 \hbar$ are observed. Following the strong backbending, a remarkable jump back to an alignment of $1 \hbar$ is observed with the $1131-\mathrm{keV}$ transition.

B. Shell-model calculations

 The extended level scheme of ${ }^{131} \mathrm{Xe}$ is confronted with ${ }^{588}$ and ${ }^{131} \mathrm{Sn}$.theoretical predictions from five large-scale shell-model 58 calculations in the gdsh valence space outside doubly- 50 tion magic ${ }^{100} \mathrm{Sn}$.

591 KSHELL. Like the SN100PN interaction, the iteraction is The first calculation was carried out in the frame- 592 derived from a realistic G matrix based on the CD-Bonn work of the pair-truncated shell model using a phe- 593 potential. However, by fitting different combinations of nomenological interaction, denoted as PQM130 (Pair- 594 two-body matrix elements to sets of experimental exciing $+\mathrm{QQ}+$ Multipole for mass region 130). The approach 595 tation energies from even-even and even-odd semi-magic leverages a pairing-plus-quadrupole interaction that con- 596 nuclei, empirical corrections are added to the original G sists of spherical single-particle energies, a monopole- 597 matrix. By using this approach, mainly the monopole pairing, a quadrupole-pairing, and a quadrupole- 598 part of the interaction is optimized.
quadrupole interaction. The Hamiltonian in each neu-599 Another calculation was conducted in the framework tron and proton space is diagonalized separately and af- 00 of the Realistic shell model (referred to as Realistic terwards the total Hamiltonian is diagonalized in the 601 SM) [88]. Single-particle energies and the two-body effec-

Figure 6. (Color online) Evolution of excited states in the negative-parity band along (a) the odd-mass $N=77$ isotones from $Z=50$ to $Z=64$ [72-77] and along (b) the oddmass $Z=54$ isotopes from $N=69$ to $N=77$ [16, 43, 78]. Newly discovered states in ${ }^{131} \mathrm{Xe}$ are marked with thick lines. (c) Net. aligned angular momenta $i_{x}(\hbar)$ of favored negativeparity bands in odd-mass ${ }^{123-131} \mathrm{Xe}$ isotopes as a function of the rotational frequency $\hbar \omega$.
tive interaction are determined via the $V_{\text {low- } k}$ approach from the CD-Bonn free nucleon-nucleon potential [85] with a cutoff momentum of $\Lambda=2.6 \mathrm{fm}^{-1}$. The effective shell-model Hamiltonian is derived by means of the many-body perturbation theory in the so-called foldeddiagram expansion or \hat{Q}-box formalism.
The last calculation, called SN100-KTH, is a 66 monopole-optimized realistic interaction, derived via the Monte-Carlo global optimization approach from the G matrix of the CD-Bonn nucleon-nucleon potential [85] 612 shown that the calculations reproduce well the excitation ${ }_{615}$ energies and $E 2$ transition probabilities in even-even Te 616 isotopes [89, 90].
${ }_{617}$ Figure 7 compares the experimentally determined en618 ergies of the first excited states (Fig. 7(a)) with the 619 results of all five shell-model calculations (Fig. 7(b) 620 PQM130, 7(c) SN100PN, 7(d) GCN50:82, 7(e) Realis621 tic SM, and 7(f) SN100-KTH). The states are separated 622 into columns for the (i) negative- and (ii) the positive${ }_{623}$ parity states. The angular momentum of the $J^{\pi}=3 / 2_{1}^{+}$ 624 ground state is reproduced by the PQM130, GCN50:82,
625 SN100-KTH and Realistic SM interactions, however, the ${ }_{626} \mathrm{SN} 100 \mathrm{PN}$ interaction reverses the first $J^{\pi}=3 / 2_{1}^{+}$and ${ }_{627} 1 / 2_{1}^{+}$states. The $J^{\pi}=11 / 2_{1}^{-}$state with a neutron628 hole configuration at 164 keV is best reproduced by 629 the SN100PN, GCN50:82, and SN100-KTH interactions 630 with deviations of only 97,74 and 27 keV , respectively.
${ }_{631}$ The Realistic SM calculation computes the level energy ${ }_{632} 157 \mathrm{keV}$ too low, while the PQM130 calculation is the ${ }_{633}$ only one which predicts the state 137 keV too high. ${ }_{634}$ The excitation energies of the first excited positive-parity ${ }_{635}$ states $J^{\pi}=5 / 2_{1}^{+}, 7 / 2_{1}^{+}, 9 / 2_{1}^{+}$, and $11 / 2_{1}^{+}$are fairly 636 reproduced by all five calculations. The experimental ${ }_{637} J^{\pi}=13 / 2_{1}^{-}$state is 239 keV higher in energy with re${ }_{638}$ spect to the $J^{\pi}=15 / 2_{1}^{-}$state. SN100PN, SN100-KTH 639 and the Realistic SM calculate the energy differences to ${ }_{640}$ be 151,35 , and 115 keV , respectively, while PQM130 641 and GCN50:82 reverse the ordering of both states. Also ${ }_{642}$ the ordering of the first excited $J^{\pi}=21 / 2_{1}^{+}$and $23 / 2_{1}^{+}$
${ }_{643}$ states and of the almost degenerate $J^{\pi}=19 / 2_{1}^{-}$and ${ }_{644} 17 / 2_{1}^{-}$states are predicted differently by the five calcu${ }_{645}$ lations. The experimental energy difference between the ${ }_{646} J^{\pi}=21 / 2_{1}^{+}$and $23 / 2_{1}^{+}$states is 55 keV . This energy ${ }_{647}$ difference is predicted slightly larger by the SN100PN,
${ }_{648}$ Realistic SM, and the GCN50:82 interactions with de-
649 viations of 231,225 and 292 keV , respectively, while 650 PQM130 transposes both states. The ordering of the ${ }_{651} J^{\pi}=19 / 2_{1}^{-}$and $17 / 2_{1}^{-}$states is predicted correctly by 652 the PQM130, GCN50:82, and SN100-KTH interactions. ${ }_{653}$ The calculations suggest that the yet unassigned state 654 on top of the positive-parity band at 3186.4 keV can 655 most likely be interpreted as the first $J^{\pi}=25 / 2_{1}^{+}$or $65627 / 2_{1}^{+}$state. Figure 8 compares the energy differences 657 between experimental and predicted level energies of the 658 five calculations along the favored negative-parity band 659 in greater detail. Going to higher spins ($J^{\pi} \geq 23 / 2_{1}^{-}$), 660 the energy differences in the different calculations amount 661 up to 747 keV for the $J^{\pi}=31 / 2_{1}^{-}$state. The high662 spin states calculated by the SN100PN interaction are 663 more compressed than in the spectra of the other in664 teractions. All five calculations tend to group pairs of 665 spins $\left(J^{\pi}=25 / 2_{1}^{-} ; 27 / 2_{1}^{-}\right),\left(J^{\pi}=29 / 2_{1}^{-} ; 31 / 2_{1}^{-}\right)$and
$666\left(J^{\pi}=33 / 2_{1}^{-} ; 35 / 2_{1}^{-}\right)$. Therefore, spin assignments of 667 the newly observed states at $3813.7\left(J^{\pi}=31 / 2_{1}^{-}\right)$and $6684944.9 \mathrm{keV}\left(J^{\pi}=35 / 2_{1}^{-}\right)$are tentative. The SN100PN, 669 GCN50:82, SN100-KTH, and Realistic SM tend to under670 estimate the excitation energies of states in the high-spin

Figure 7. Comparison of experimental energy spectra with the results of shell-model calculations for ${ }^{131} \mathrm{Xe}$. (a) Experimental energy spectrum. The results obtained with the different interactions are separated in different columns: (b) PQM130, (c) SN100PN, (d) GCN50:82, (e) Realistic SM, and (f) SN100-KTH. For clarity, the states are arranged into two columns for the negative- and the positive-parity states.

Figure 8. (Color online) Energy differences between experimental and calculated excitation energies with different shellmodel interactions plotted against the spin of the state.

Figure 9. Average neutron (top row) and proton (bottom row) occupation numbers in the proton and neutron $h_{11 / 2}$ orbitals in ${ }^{131} \mathrm{Xe}$, calculated with the (a)-(b) SN100PN and (c)-(d) GCN50:82 interaction. (e)-(f) Similar results for ${ }^{129}$ Xe calculated with the SN100PN interaction.

Figure 10. (Color online) Decomposition of selected states of ${ }^{131} \mathrm{Xe}$ into their proton and neutron configurations computed by $\left(\mathrm{a}_{1}\right)-\left(\mathrm{f}_{1}\right)$ the SN100PN and $\left(\mathrm{a}_{2}\right)-\left(\mathrm{f}_{2}\right)$ the GCN50:82 interaction. The three largest percentages are written inside the squares. Percentages below 2% are not visualized.

Figure 11 shows a similar decomposition of the $J^{\pi}=$ ${ }_{812} 23 / 2_{1}^{-}, 27 / 2_{1}^{-}, 31 / 2_{1}^{-}$, and $35 / 2_{1}^{-}$states into their lead-
ing proton and neutron configurations, calculated with the SN100PN interaction for ${ }^{129} \mathrm{Xe}$. Although neutron and proton configurations are more fragmented, the proton configurations before and at the alignment are similar ${ }_{84}$ to the ones in ${ }^{131} \mathrm{Xe}$. Like in ${ }^{131} \mathrm{Xe}$, the $\pi\left(g_{7 / 2}^{3} d_{5 / 2}^{1}\right)$ con- ${ }^{84}$ figuration becomes less probable, while the $\pi h_{11 / 2}$ con- ${ }^{84}$ figuration contribute pertubatively to the $J^{\pi}=27 / 2_{1}^{-}$ and $31 / 2_{1}^{-}$state in ${ }^{129} \mathrm{Xe}$. However, deviations occur at the $J^{\pi}=35 / 2_{1}^{-}$state. Unlike in ${ }^{131}$ Xe (cf. Fig. $10(\mathrm{f}, \mathrm{n})$), where a strong $\pi\left(g_{7 / 2}^{3} d_{5 / 2}^{1}\right)$ character returns to prevail after the backbending, the configurations of the $J^{\pi}=$ $35 / 2_{1}^{-}$state in ${ }^{129} \mathrm{Xe}$ mirror the decompositions observed for the upbend states $J^{\pi}=27 / 2_{1}^{-}$and $31 / 2_{1}^{-}$. In particular the contributions from the $\pi h_{11 / 2}$ remain unchanged. This behavior confirms the experimentally observed evolution from upbending in ${ }^{129} \mathrm{Xe}$ to the remarkable backbending in ${ }^{131} \mathrm{Xe}$.

Neutron configuration
Figure 11. Decomposition of selected states of ${ }^{129}$ Xe into their proton and neutron configuration computed by the SN100PN interaction.

To inspect the alignment properties and the impact of $\pi h_{11 / 2}$ protons in ${ }^{131} \mathrm{Xe}$ and ${ }^{129} \mathrm{Xe}$, the results of the shell-model calculations are reparametrized to the total aligned angular momenta I_{x} as a function of the rotational frequency $\hbar \omega$. The SN100PN and the GCN50:82 interactions are employed in two separate calculations: (i) permitting excitations into the $\pi h_{11 / 2}$ orbital and (ii) prohibiting more than one proton in the $\pi h_{11 / 2}$ orbital. Figure 12(a) compares the extracted theoretical and ex- 87 perimental total aligned angular momenta I_{x} of ${ }^{131} \mathrm{Xe}$ 878 in the vicinity of the backbending region is of special for calculations without any truncation. The critical fre- 879 interest. It is well known that in the neighborhood of

Figure 12. (Color online) (a) Comparison between experimental and calculated total aligned angular momenta I_{x} as a function of the rotational frequency $\hbar \omega$, employing the SN100PN, GCN50:82, SN100-KTH, and Realistic SM calculations for ${ }^{131} \mathrm{Xe}$. (b) Comparison between experimental and calculated total aligned angular momenta I_{x} as a function of the rotational frequency $\hbar \omega$, employing the SN100PN and GCN50:82 with a truncation of only one allowed proton in the $\pi h_{11 / 2}$ orbital. (c) Similar comparison for ${ }^{129}$ Xe employing the SN100PN calculation: (i) untruncated and (ii) truncated with only one proton allowed in the $\pi h_{11 / 2}$ orbital. Experimental data for ${ }^{129} \mathrm{Xe}$ are taken from Ref. [16].
the band crossing a minimum in the $B(E 2)$ values is caused by the interaction between the bands [94], there${ }_{886}$ teraction with standard effective charges $e_{\pi}=1.5 e$ and ${ }_{91}$
${ }_{887} e_{\nu}=0.5 e$. The theoretical values are arranged into 888 889 wo columns for the untruncated calculation (left) and 891 sligh
${ }_{892}$ The S 893 transition strength from $932 e^{2} \mathrm{fm}^{4}$ for the decay ${ }_{894} J^{\pi}=23 / 2_{1}^{-}$state to $287 e^{2} \mathrm{fm}^{4}$ for the decay at the po895 sition of the alignment at $J^{\pi}=27 / 2_{1}^{-}$. An even more 896 pronounced reduction from $929 e^{2} \mathrm{fm}^{4}$ to $30 e^{2} \mathrm{fm}^{4}$ is cal897 culated by the GCN50:82. A similar result is given by 898 the Realistic SM where the $23 / 2_{1}^{-} \rightarrow 19 / 2_{1}^{-}$transition ${ }_{899}$ has $B(E 2)=275 e^{2} \mathrm{fm}^{4}$, compared to $B(E 2)=24 e^{2} \mathrm{fm}^{4}$ 900 for the $27 / 2_{1}^{-} \rightarrow 23 / 2_{1}^{-}$transition. Obviously, this re901 sult cannot be reproduced by the truncated calculations 902 without pairs in the $\pi h_{11 / 2}$ orbital. The alignment and 9оз the related reduced $B(E 2)$ value is observed for the $904 J^{\pi}=31 / 2_{1}^{-}$state contradicting the experimental find905 ings. In summary, the reduced transition strengths val906 ues provide a precise spin dependent confirmation of the 907 significant role of the $\pi h_{11 / 2}$ orbital.

Figure 13. (Color online) (a) Comparison between experimental and calculated total aligned angular momenta I_{x} as a function of the rotational frequency $\hbar \omega$, employing the SN100PN calculation for (a) ${ }^{130} \mathrm{Xe}$ and (b) ${ }^{132} \mathrm{Xe}$. The SN100PN interaction is employed in two different calculations: (i) untruncated and (ii) truncated with only one proton allowed in the $\pi h_{11 / 2}$ orbital. Experimental data taken from Refs. [39, 95].

In order to obtain a consistent picture also the positiveparity ground state bands in the even-even neighbors ${ }^{130} \mathrm{Xe}$ and ${ }^{132} \mathrm{Xe}$ were investigated and calculations em-
ploying the SN100PN interaction were carried out. Like before, the calculations are divided into (i) the full $g d s h{ }_{972}$ valence space and (ii) a truncated calculation where only ${ }^{27}$ one proton is allowed to occupy the $\pi h_{11 / 2}$ orbital. A 974 comparison between the calculations and the experimentally obtained total aligned angular momentum I_{x} for ${ }^{130} \mathrm{Xe}$ is shown in Fig. $13(\mathrm{a})$. In ${ }^{130} \mathrm{Xe}, I_{x}$ smoothly follows the Harris curve up to the $J^{\pi}=8_{1}^{+}$state at a rotational frequency of approx. $\hbar \omega=0.38 \mathrm{MeV}$. At the position of the $J^{\pi}=10_{1}^{+}$state, I_{x} exhibits a strong backbending down to a frequency of approx. $\hbar \omega=0.12 \mathrm{MeV}$. Similar to ${ }^{131} \mathrm{Xe}$, a refolding after the alignment is observed for higher-lying states. Both calculations predict an initial alignment at the position of the $J^{\pi}=6_{1}^{+}$ state, followed by a strong alignment at the position of the $J^{\pi}=10_{1}^{+}$state. The untruncated SN100PN calculation predicts the $J^{\pi}=6_{1}^{+}$and 8_{1}^{+}states only 24 keV and 97 keV too low in energy, while the truncated calculation underestimates the energies by 434 keV and 527 keV , respectively. Furthermore, the $J^{\pi}=10_{1}^{+}$ state at $E_{x}=2973 \mathrm{keV}$ is predicted by the calculations at excitation energies of 2659 keV (untruncated) and 2589 keV (truncated). The occupation of the $\pi h_{11 / 2}$ orbital decreases from $N_{\pi}=0.273$ at the $J^{\pi}=0_{1}^{+}$state to $N_{\pi}=0.099$ at the $J^{\pi}=6_{1}^{+}$state. Subsequently, the occupancy sharply increases to 0.277 at the $J^{\pi}=8_{1}^{+}$ state and stays almost constant for states with $J^{\pi} \geq 8_{1}^{+}$. The increase of the occupancy is not compatible with the experimentally observed alignment. However, the calculated $B(E 2)$ values along the $12_{1}^{+} \rightarrow 10_{1}^{+} \rightarrow 8_{1}^{+} \rightarrow 6_{1}^{+}$ cascade drop sharply from $548 e^{2} \mathrm{fm}^{4}$ to $12 e^{2} \mathrm{fm}^{4}$ and rise back to $1084 e^{2} \mathrm{fm}^{4}$. Consequently, all experimental observables are well reproduced corroborating a concurrent neutron and proton alignment in ${ }^{130} \mathrm{Xe}$. A comparable result was obtained by a theoretical study of the even-mass isotopes ${ }^{114-130} \mathrm{Xe}$ employing the microscopic sdIBM-2+2q.p. approach [96]. The alignment along the positive-parity band was proposed to be of caused by the $\pi h_{11 / 2}^{2}$ proton pair. Rotational alignment of pair of neutrons in the $\nu h_{11 / 2}^{2}$ are given by a calculation obtained ${ }_{10}$ with the quadrupole-quadrupole-plus-pairing model [34]. 1 These results are in contradiction to the experimental 10 values in ${ }^{130} \mathrm{Xe}$. for total aligned angular momenta I_{x} for ${ }^{132} \mathrm{Xe}$ is de-1012 ture. Similar results were obtained in the $-2 n$ isotope picted in Fig. 13(b). Since no experimental data is avail- $1013{ }^{129} \mathrm{Xe}$. The new results together with previous achieveable for the $J^{\pi}=8^{+}$state, the calculation provides a 1014 ments demonstrate convincingly the predictive power of prediction for this state. In order to compare theoreti- 1015 the modern shell-model calculations with its interaction. cal calculations with the experimental data, I_{x} is plot-1016 The interplay between single-particle and collective exted for a range from 0 to 100 keV of the expected tran-1017 citation in this transitional region arise unambiguously sition energy of the yet unobserved $10_{1}^{+} \rightarrow 8_{1}^{+}$decay. 1018 from the specific $h_{11 / 2}$ intruder orbital.
The region is marked gray in Fig. 13(b). Both calcu-1019 In future, measurements of lifetimes and g factors lations predict a first alignment at the $J^{\pi}=6_{1}^{+}$state ${ }_{1020}$ which serve as sensitive probes for nucleon alignment, followed by a second one at the $J^{\pi}=10_{1}^{+}$state. Good ${ }_{1021}$ should be performed to reaffirm the proposed backbendagreement is obtained with the untruncated calculation 1022 ing mechanism in transitional Xe isotopes. Specifically, where the $J^{\pi}=6_{1}^{+}$and 10_{1}^{+}states are slightly under-1023 the discovery of the predicted nearly degenerated $J^{\pi}=$ predicted by 136 and 262 keV , in contrast to the trun-1024 8^{+}state in ${ }^{132} \mathrm{Xe}$, causing the isomeric $J^{\pi}=10^{+}$state, cated calculation with a discrepancy of 566 keV for the 1025 is of highest interest. Furthermore, fast-timing mea-

1026 surements are in order to resolve the possible onset of ${ }_{1037}$ the German BMBF under contract No. 05P12PKFNE ${ }_{1027} J^{\pi}=23 / 2_{1}^{+}$isomerism in ${ }^{131} \mathrm{Xe}$ which is also predicted ${ }_{1038}$ TP4, from the European Union Seventh Framework Pro-

1028 by shell-model calculations.

ACKNOWLEDGMENTS

We thank the IKP FN Tandem accelerator team for 1044 U.K. Science and Technology Facilities Council (STFC)
1030 1039 gramme FP7/2007-2013 under Grant Agreement No. 1040262010 - ENSAR, from the Spanish Ministerio de Cien1041 cia e Innovación under contract FPA2011-29854-C04, 1042 from the Spanish Ministerio de Economía y Competi1043 tividad under contract FPA2014-57196-C5, and from the 1034 press our thanks to Prof. Dr. Furong Xu and Prof. 1048 Generalitat Valenciana, Spain, under the grant PROM1035 Dr. Costel Petrache for valuable discussions. The re- 1049 ETEOII/2014/019 and EU under the FEDER program. 1036 search leading to these results has received funding from he professional support during the experiment. We also 1045 L.K. and A.V. thank the Bonn-Cologne Graduate School 2 would like to thank Prof. Dr. Alfredo Poves for pro- 1046 of Physics and Astronomy (BCGS) for financial support. viding the GCN50:82 interaction. Furthermore, we ex-1047 One of the authors (A. Gadea) has been supported by the -
[1] R. Wyss, A. Granderath, R. Bengtsson, P. von Brentano, 1094 A. Dewald, A. Gelberg, A. Gizon, J. Gizon, S. Harissop- 1095 ulos, A. Johnson, W. Lieberz, W. Nazarewicz, J. Nyberg, 1096 and K. Schiffer, "Interplay between proton and neutron 1097 S-bands in the Xe-Ba-Ce-region," Nucl. Phys. A 505, $337{ }_{1098}$ - 351 (1989).
[2] A. Granderath, P.F. Mantica, R. Bengtsson, R. Wyss, 1100 P. von Brentano, A. Gelberg, and F. Seiffert, "Shapes ${ }_{1101}$ and rotational structures of neutron $h_{11 / 2}$ configurations 1102 in the Xe-Ba-Ce region," Nucl. Phys. A 597, 427 - 471_{1103} (1996).
[3] A. Al-Khatib, H. Hübel, P. Bringel, C. Engelhardt, 1105 A. Neußer-Neffgen, G. B. Hagemann, C. R. Hansen, $\mathbf{1 1 0 6}^{106}$ B. Herskind, G. Sletten, A. Bracco, F. Camera, G. Ben- 1107 zoni, P. Fallon, R. M. Clark, M. P. Carpenter, R. V. F. 1108 Janssens, T. L. Khoo, T. Lauritsen, P. Chowdhury, 1109 H. Amro, A. K. Singh, and R. Bengtsson, "Transition to 1110 non-collective states at high spin in ${ }^{124} \mathrm{Xe}, "$ Eur. Phys. 1111 J 36, 21-29 (2008).
[4] A. Al-Khatib, A. K. Singh, H. Hübel, P. Bringel, 11113 A. Bürger, J. Domscheit, A. Neußer-Neffgen, G. Schön-1114 waßer, G. B. Hagemann, C. Ronn Hansen, B. Herskind, 1115 G. Sletten, J. N. Wilson, J. Timár, A. Algora, Zs. Dom- 1116 brádi, J. Gál, G. Kalinka, J. Molnár, B. M. Nyakó, 1117 D. Sohler, L. Zolnai, R. M. Clark, M. Cromaz, P. Fal-1118 lon, I. Y. Lee, A. O. Macchiavelli, D. Ward, H. Amro, 1119 W. C. Ma, M. Kmiecik, A. Maj, J. Styczen, K. Zuber, 1120 K. Hauschild, A. Korichi, A. Lopez-Martens, J. Roc-1121 caz, S. Siem, F. Hannachi, J. N. Scheurer, P. Bednar- 1122 czyk, Th. Byrski, D. Curien, O. Dorvaux, G. Duchêne, 1123 B. Gall, F. Khalfallah, I. Piqueras, J. Robin, A. Gör- 1124 gen, K. Juhász, S. B. Patel, A. O. Evans, G. Rainovski, 1125 G. Benzoni, A. Bracco, F. Camera, S. Leoni, P. Mason, 1126 B. Million, A. Paleni, R. Sacchi, O. Wieland, C. M. Pe- 1127 trache, D. Petrache, G. La Rana, R. Moro, G. De Ange- 1128 lis, J. C. Lisle, B. Cederwall, K. Lagergren, R. M. Lieder, 1129 E. Podsvirova, W. Gast, H. Jäger, and N. Redon, "Com-1130 petition between collective and noncollective excitation ${ }_{1131}$ modes at high spin in ${ }^{124} \mathrm{Ba}, " P h y s . ~ R e v . ~ C ~ 74, ~ 0143051132 ~$ (2006).

1133
[5] A. K. Singh, H. Hübel, J. Domscheit, G. B. Hagemann, 1134 B. Herskind, D. R. Jensen, J. N. Wilson, R. Clark, 1135 M. Cromaz, P. Fallon, A. Görgen, I. Y. Lee, A. O. Mac- 1136 chiavelli, D. Ward, H. Amro, W. C. Ma, J. Timár, and ${ }_{1137}$
I. Ragnarsson, "Evidence for noncollective oblate structures at high spin in ${ }^{123}$ Cs," Phys. Rev. C 70, 034315 (2004).
[6] H. Morinaga and N. L. Lark, "Collective excited states in even xenon isotopes," Nucl. Phys. 67, 315 - 320 (1965).
[7] I. Ragnarsson, A. Sobiczewski, R. K. Sheline, S. E. Larsson, and B. Nerlo-Pomorska, "Comparison of potentialenergy surfaces and moments of inertia with experimental spectroscopic trends for non-spherical $Z=50-82$ nuclei," Nucl. Phys. A 233, $329-356$ (1974).
[8] R. Wyss, J. Nyberg, A. Johnson, R. Bengtsson, and W. Nazarewicz, "Highly deformed intruder bands in the $A \approx 130$ mass region," Phys. Lett. B 215, $211-217$ (1988).
[9] R. F. Casten and P. von Brentano, "An extensive region of $O(6)$-like nuclei near $A=130, "$ Phys. Lett. B 152, 22 - 28 (1985).
[10] Y. S. Chen, S. Frauendorf, and G. A. Leander, "Shape of rotating quasiparticle orbits and signature splitting in La, Ce, and Pr nuclei," Phys. Rev. C 28, 2437-2445 (1983).
[11] R. O. Sayer, J. S. Smith, and W. T. Milner, "Rotational and quasirotational bands in even-even nuclei," At. Data Nucl. Data Tables 15, 85 - 110 (1975).
[12] N. Yoshida, A. Arima, and T. Otsuka, "Description of high-spin states in the interacting boson model," Phys. Lett. B 114, 86 - 90 (1982).
[13] K. Nomura, T. Nikšić, and D. Vretenar, "Shape-phase transitions in odd-mass γ-soft nuclei with mass $A \approx 130$," Phys. Rev. C 96, 014304 (2017).
[14] L. M. Robledo, R. R. Rodríguez-Guzmán, and P. Sarriguren, "Evolution of nuclear shapes in medium mass isotopes from a microscopic perspective," Phys. Rev. C 78, 034314 (2008).
[15] C.-B. Moon, C. S. Lee, T. Komatsubara, Y. Sasaki, and K. Furuno, "Structure of the negative parity bands in ${ }^{125}$ Xe," Phys. Rev. C 76, 067301 (2007).
[16] Y. Huang, Z. G. Xiao, S. J. Zhu, C. Qi, Q. Xu, W. J. Cheng, H. J. Li, L. M. Lyu, R. S. Wang, W. H. Yan, H. Yi, Y. Zhang, Q. M. Chen, C. Y. He, S. P. Hu, C. B. Li, H. W. Li, P. W. Luo, X. G. Wu, Y. H. Wu, Y. Zheng, and J. Zhong, "High-spin structures in the ${ }^{129}$ Xe nucleus," Phys. Rev. C 93, 064315 (2016).
[17] K. Higashiyama, N. Yoshinaga, and K. Tanabe, "Shell model study of backbending phenomena in Xe isotopes,"

1138

Phys. Rev. C 65, 054317 (2002).
1201
[18] Y. Lei and Z. Y. Xu, " $\left(h_{11 / 2}\right)^{2}$ alignments in neutron- 1202 rich ${ }^{132}$ Ba with negative-parity pairs," Phys. Rev. C 92,1203 014317 (2015).
19] T. Takahashi, N. Yoshinaga, and K. Higashiyama, 1205 "Backbending phenomena in ${ }^{132,134,136} \mathrm{Ce}$ with a pair-1206 truncated shell model," Phys. Rev. C 71, 014305 (2005). 1207
[20] H. Daniel, O. Mehling, P. Schmidlin, D. Schotte, and 1208 E. Thummernicht, "Zerfallsschemata, β-Matrixelemente ${ }^{1209}$ und γ-Multipolordnungen für die Übergänge ${ }^{56} \mathrm{Co} \rightarrow{ }^{56}{ }_{1210}$ Fe und ${ }^{131} \mathrm{~J} \rightarrow{ }^{131} \mathrm{Xe}, "$ Z. Phys 179, 62-75 (1964).
[21] R. A. Meyer, F. Momyer, and W. B. Walters, "Decay of 1212 8.0-day ${ }^{131} \mathrm{I}$ to levels of ${ }^{131} \mathrm{Xe}$ and 11.77-day ${ }^{131 m} \mathrm{Xe}$," Z. ${ }^{1213}$ Phys. 268, 387-390 (1974).
[22] Chr. Bargholtz, S. Beshai, and L. Gidefeldt, "Angular 1215 correlation measurements in ${ }^{131} \mathrm{Xe}$," Nucl. Phys. A 270,1216 189-199 (1976).
[23] M.-C. Lépy, L. Brondeau, Ch. Bobin, V. Lourenço, 1218 C. Thiam, and M.-M. Bé, "Determination of X- and 1219 gamma-ray emission intensities in the decay of ${ }^{131} \mathrm{I},{ }^{1220}$ Appl. Radiat. Isot. 109, $154-159$ (2016).
[24] M. Berman and G. B. Beard, "Nuclear Resonance Fluo- 1222 rescence in ${ }^{131}$ Xe," Phys. Rev. C 2, 1506-1513 (1970). ${ }^{1223}$
[25] H. Langhoff, "Lifetime measurements in ${ }^{131} \mathrm{Xe}$ and ${ }^{1224}$ ${ }^{129}$ Xe," Nucl. Phys. A 158, $657-663$ (1970).

1225
[26] D. C. Hoffman, J. W. Barnes, B. J. Dropesky, F. O. 1226 Lawrence, G. M. Kelley, and M. A. Ott, "Half-lives of 1227 ${ }^{129 m} \mathrm{Xe},{ }^{131 m} \mathrm{Xe},{ }^{133 m} \mathrm{Xe},{ }^{133 g} \mathrm{Xe}$ and ${ }^{135 g} \mathrm{Xe}$, , J. Inorg. 1228 Nucl. Chem. 37, 2336 (1975).

1229
[27] D. C. Palmer, A. D. Irving, P. D. Forsyth, I. Hall, $\mathbf{1 2 3 0}^{2}$ D. G. E. Martin, and M. J. Maynard, "Low-lying levels $\mathbf{1 2 3 1}^{231}$ of ${ }^{129} \mathrm{Xe}$ and ${ }^{131} \mathrm{Xe}, "$ J. Phys. G 4, 1143 (1978).
[28] Yu. Khazov, I. Mitropolsky, and A. Rodionov, "Nuclear 1233 Data Sheets for $A=131, "$ Nucl. Data Sheets 107, 27151234 - 2930 (2006).
[29] A. D. Irving, P. D. Forsyth, I. Hall, and D. G. E. Martin, 1236 "The properties of low-lying levels of ${ }^{129} \mathrm{Xe}$ and ${ }^{131} \mathrm{Xe}, "{ }^{1237}$ J. Phys. G 5, 1595 (1979).
[30] T. Lönnroth, J. Kumpulainen, and C. Tuokko, "One- 1239 and Three-Quasiparticle States in ${ }^{127,129,131,133}$ Xe and 1240 Their Coexistence With Band Structures," Phys. Scripta ${ }^{1241}$ 27, 228 (1983).
[31] A. Kerek, A. Luukko, M. Grecescu, and J. Sztarkier, ${ }^{1243}$ "Two- and three-quasiparticle states in ${ }^{132} \mathrm{Xe}$ and ${ }^{131} \mathrm{Xe}, "{ }^{1244}$ Nucl. Phys. A 172, $603-617$ (1971).
[32] "Evaluated Nuclear Structure Data File (ENSDF)," ${ }^{1246}$ (2017), http://www.nndc.bnl.gov/ensdf/.
[33] J. F. Smith, C. J. Chiara, D. B. Fossan, D. R. LaFosse, 1248 G. J. Lane, J. M. Sears, K. Starosta, M. Devlin, 1249 F. Lerma, D. G. Sarantites, S. J. Freeman, M. J. Leddy, 1250 J. L. Durell, A. J. Boston, E. S. Paul, A. T. Semple, I. Y. 1251 Lee, A. O. Macchiavelli, and P. H. Heenen, "Excited ${ }^{1252}$ states and deformation of ${ }^{112} \mathrm{Xe}$," Phys. Lett. B 523, 131253 - 21 (2001).
[34] S. P. Sarswat, Arun Bharti, and S. K. Khosa, "Backbend- 1255 ing and breaking of axial symmetry in the yrast bands of 1256 ${ }^{114-130}$ Xe isotopes," Phys. Rev. C 58, 2041-2048 (1998). 1257
[35] H. Kusakari, K. Kitao, K. Sato, M. Sugawara, and ${ }^{1258}$ H. Katsuragawa, "High-spin states in even-mass Xe nu-1259 clei and backbending phenomena," Nucl. Phys. A 401,1260 $445-459$ (1983).
36] C. S. Purry, P.M. Walker, G. D. Dracoulis, T. Kibedi F. G. Kondev, S. Bayer, A. M. Bruce, A. P. Byrne, ${ }^{1263}$
W. Gelletly, P. H. Regan, C. Thwaites, O. Burglin, and N. Rowley, "Multi-quasiparticle isomers and rotational bands in ${ }^{178}$ W," Nuc. Phys. A 632, $229-274$ (1998).
[37] H. F. Brinckmann, C. Heiser, and W. D. Fromm, "Ein Hochangeregter isomerer Kernzustand in ${ }^{132} \mathrm{Xe}$," Nucl. Phys. A 96, 318 - 326 (1967).
[38] M. v. Hartrott, J. Hadijuana, K. Nishiyama, D. Quitmann, D. Riegel, and H. Schweickert, "Nuclear spin relaxation of Xe in liquid Te," Z. Phys. A 278, 303-308 (1976).
[39] A. Vogt, M. Siciliano, B. Birkenbach, P. Reiter, K. Hadyńska-Klęk, C. Wheldon, J. J. Valiente-Dobón, E. Teruya, N. Yoshinaga, K. Arnswald, D. Bazzacco, A. Blazhev, A. Bracco, B. Bruyneel, R. S. Chakrawarthy, R. Chapman, D. Cline, L. Corradi, F. C. L. Crespi, M. Cromaz, G. de Angelis, J. Eberth, P. Fallon, E. Farnea, E. Fioretto, C. Fransen, S. J. Freeman, B. Fu, A. Gadea, W. Gelletly, A. Giaz, A. Görgen, A. Gottardo, A. B. Hayes, H. Hess, R. Hetzenegger, R. Hirsch, H. Hua, P. R. John, J. Jolie, A. Jungclaus, V. Karayonchev, L. Kaya, W. Korten, I. Y. Lee, S. Leoni, X. Liang, S. Lunardi, A. O. Macchiavelli, R. Menegazzo, D. Mengoni, C. Michelagnoli, T. Mijatović, G. Montagnoli, D. Montanari, C. Müller-Gatermann, D. Napoli, C. J. Pearson, Zs. Podolyák, G. Pollarolo, A. Pullia, M. Queiser, F. Recchia, P. H. Regan, J.-M. Régis, N. Saed-Samii, E. Şahin, F. Scarlassara, M. Seidlitz, B. Siebeck, G. Sletten, J. F. Smith, P.-A. Söderström, A. M. Stefanini, O. Stezowski, S. Szilner, B. Szpak, R. Teng, C. Ur, D. D. Warner, K. Wolf, C. Y. Wu, and K. O. Zell, "High-spin structures in ${ }^{132} \mathrm{Xe}$ and ${ }^{133} \mathrm{Xe}$ and evidence for isomers along the $N=79$ isotones," Phys. Rev. C 96, 024321 (2017).
[40] H. Helppi, J. Hattula, A. Luukko, M. Jääskeläinen, and F. Dönau, "In-beam study of ${ }^{\mathbf{1 2 7}, 129} \mathrm{Xe}$ and collective description of the level structures in odd-A Xe nuclei," Nucl. Phys. A 357, $333-355$ (1981).
[41] I. Rezanka, A. Kerek, A. Luukko, and C. J. Herrlander, "High-spin states in odd Xe nuclei," Nucl. Phys. A 141, $130-144$ (1970).
[42] A. Granderath, D. Lieberz, A. Gelberg, S. Freund, W. Lieberz, R. Wirowski, P. von Brentano, and R. Wyss, "Excited states in ${ }^{125} \mathrm{Xe}$," Nucl. Phys. A 524, $153-178$ (1991).
[43] I. Wiedenhöver, U. Neuneyer, C. Kerskens, J. Altmann, O. Stuch, J. Theuerkauf, G. Siems, R. Wirowski, M. Eschenauer, P. von Brentano, R. Schubart, H. Kluge, and K. H. Maier, "High spin structure in ${ }^{127} \mathrm{Xe}$ and ${ }^{125} \mathrm{Xe}$," Z. Phys. 347, 71-72 (1993).
[44] A. Al-Khatib, G. B. Hagemann, G. Sletten, A. K. Singh, H. Amro, G. Benzoni, A. Bracco, P. Bringel, F. Camera, M. P. Carpenter, P. Chowdhury, R. M. Clark, C. Engelhardt, P. Fallon, B. Herskind, H. Hübel, R. V. F. Janssens, T. L. Khoo, T. Lauritsen, A. Neußer-Neffgen, and C. Rønn Hansen, "High-spin spectroscopy in ${ }^{125} \mathrm{Xe}$," Phys. Rev. C 83, 024306 (2011).
[45] S. Chakraborty, H. P. Sharma, S. S. Tiwary, C. Majumder, P. K. Prajapati, S. Rai, P. Popli, M. Singh, S. S. Bhattacharjee, R. P. Singh, S. Muralithar, P. Banerjee, S. Ganguly, S. Kumar, A. Kumar, and R. Palit, "TwoNeutron Alignment in ${ }^{127}$ Xe," Braz. J Phys. 47, 406-410 (2017).
[46] S. Akkoyun et al., "AGATA - Advanced GAmma Tracking Array," Nucl. Instrum. Meth. Phys. Res. A 668, 26 (2012).
[47] A. M. Stefanini, L. Corradi, G. Maron, A. Pisent, 1329 M. Trotta, A. M. Vinodkumar, S. Beghini, G. Montag-1330 noli, F. Scarlassara, G. F. Segato, A. De Rosa, G. In-1331 glima, D. Pierroutsakou, M. Romoli, M. Sandoli, G. Pol-1332 larolo, and A. Latina, "The heavy-ion magnetic spec-1333 trometer PRISMA," Nucl. Phys. A 701, 217 - 221 (2002). 1334
[48] S. Szilner, C. A. Ur, L. Corradi, N. Marginean, G. Pol-1335 larolo, A. M. Stefanini, S. Beghini, B. R. Behera, 1336 E. Fioretto, A. Gadea, B. Guiot, A. Latina, P. Mason, 1337 G. Montagnoli, F. Scarlassara, M. Trotta, G. de Angelis, 1338 F. Della Vedova, E. Farnea, F. Haas, S. Lenzi, S. Lunardi, 1339 R. Marginean, R. Menegazzo, D. R. Napoli, M. Nespolo, ${ }_{1340}$ I. V. Pokrovsky, F. Recchia, M. Romoli, M.-D. Salsac, ${ }_{1341}$ N. Soić, and J. J. Valiente-Dobón, "Multinucleon trans- ${ }_{1342}$ fer reactions in closed-shell nuclei," Phys. Rev. C 76, ${ }_{1343}$ 024604 (2007).
[49] L. Corradi, S. Szilner, G. Pollarolo, D. Montanari, ${ }_{1345}$ E. Fioretto, A.M. Stefanini, J. J. Valiente-Dobón, ${ }_{1346}$ E. Farnea, C. Michelagnoli, G. Montagnoli, F. Scarlas- 1347 sara, C.A. Ur, T. Mijatović, D. Jelavić Malenica, N. Soić, ${ }_{1348}$ and F. Haas, "Multinucleon transfer reactions: Present ${ }_{1349}$ status and perspectives," Nucl. Instrum. Meth. Phys. 1350 Res. B 317, Part B, 743 - 751 (2013).
[50] L. Netterdon, V. Derya, J. Endres, C. Fransen, A. Hen- ${ }_{1352}$ nig, J. Mayer, C. Müller-Gatermann, A. Sauerwein, 1353 P. Scholz, M. Spieker, and A. Zilges, "The γ-ray spec- ${ }_{1354}$ trometer HORUS and its applications for nuclear astro- ${ }_{1355}$ physics," Nucl. Instrum. Meth. Phys. Res. A 754, $94-{ }_{-1356}$ 100 (2014).
[51] L. Kaya, A. Vogt, P. Reiter, B. Birkenbach, R. Hirsch, ${ }_{1358}^{1357}$ K. Arnswald, H. Hess, M. Seidlitz, T. Steinbach, N. Warr, 1359 K. Wolf, C. Stahl, N. Pietralla, T. Limböck, K. Meer- ${ }_{1360}$ holz, and R. Lutter, "Characterization and calibration of ${ }_{1361}$ radiation-damaged double-sided silicon strip detectors," ${ }_{1362}$ Nucl. Instrum. Meth. Phys. Res. A 855, 109 - 117 (2017). ${ }_{1363}$
[52] A. Gadea, E. Farnea, J. J. Valiente-Dobón, B. Million, ${ }_{1364}$ D. Mengoni, D. Bazzacco, F. Recchia, A. Dewald, Th. ${ }_{1365}$ Pissulla, W. Rother, G. de Angelis, et al., "Conceptual ${ }_{1366}$ design and infrastructure for the installation of the first ${ }_{1367}$ AGATA sub-array at LNL," Nucl. Instrum. Meth. Phys. ${ }_{1368}$ Res. A 654, 88 - 96 (2011).
[53] A. Wiens, H. Hess, B. Birkenbach, B. Bruyneel, ${ }_{1370}^{1369}$ J. Eberth, D. Lersch, G. Pascovici, P. Reiter, and H.- ${ }_{1371}$ G. Thomas, "The AGATA triple cluster detector," Nucl. ${ }_{1372}$ Instrum. Meth. Phys. Res. A 618, 223 - 233 (2010). ${ }_{1373}$
[54] R.S. Kempley et al., "Cross Coincidences in the ${ }^{136} \mathrm{Xe}_{1374}$ $+{ }^{208} \mathrm{~Pb}$ deep-inelastic reaction," Acta. Phys. Pol. B 42, ${ }_{1375}$ 717-720 (2011).
[55] M. Siciliano et al., "Neutron-rich nuclei in the vicinity of ${ }_{1377}$ ${ }^{208}$ Pb," LNL Annual Report 2014 241, 63-64 (2015). ${ }^{1378}$
[56] A. Vogt, B. Birkenbach, P. Reiter, L. Corradi, T. Mija- ${ }_{1379}$ tović, D. Montanari, S. Szilner, D. Bazzacco, M. Bowry, ${ }_{1380}$ A. Bracco, B. Bruyneel, F. C. L. Crespi, G. de Ange- ${ }_{1381}$ lis, P. Désesquelles, J. Eberth, E. Farnea, E. Fioretto, ${ }_{1382}$ A. Gadea, K. Geibel, A. Gengelbach, A. Giaz, A. Gör- ${ }_{1383}$ gen, A. Gottardo, J. Grebosz, H. Hess, P. R. John, 1_{138} J. Jolie, D. S. Judson, A. Jungclaus, W. Korten, S. Leoni, 1385 S. Lunardi, R. Menegazzo, D. Mengoni, C. Michelagnoli, ${ }_{1386}$ G. Montagnoli, D. Napoli, L. Pellegri, G. Pollarolo, ${ }_{1387}$ A. Pullia, B. Quintana, F. Radeck, F. Recchia, D. Rosso, ${ }_{1388}$ E. Şahin, M. D. Salsac, F. Scarlassara, P.-A. Söderström, ${ }_{1389}$ A. M. Stefanini, T. Steinbach, O. Stezowski, B. Szpak, 1390 Ch. Theisen, C. Ur, J. J. Valiente-Dobón, V. Vandone, ${ }_{1391}$ and A. Wiens, "Light and heavy transfer products in
${ }^{136} \mathrm{Xe}+{ }^{238} \mathrm{U}$ multinucleon transfer reactions," Phys. Rev. C 92, 024619 (2015).
[57] B. Bruyneel, B. Birkenbach, and P. Reiter, "Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library," Eur. Phys. J. A 52, 70 (2016).
[58] A. Lopez-Martens, K. Hauschild, A. Korichi, J. Roccaz, and J-P. Thibaud, " γ-ray tracking algorithms: a comparison," Nucl. Instrum. Meth. Phys. Res. A 533, 454 - 466 (2004).
[59] tesa SE, "tesa ${ }^{\circledR}$ adhesive 68556 data sheet," .
[60] N. Saed-Samii, Lifetime measurements using the FATIMA array in combination with EXOGAM@ILL, Diplomarbeit, Universität zu Köln (2013), unpublished.
[61] J. Theuerkauf, Ph.D. thesis, Universität zu Köln (1994).
[62] I. Wiedenhöver, "Computer code corleone," (1997), unpublished.
[63] I. Wiedenhöver, O. Vogel, H. Klein, A. Dewald, P. von Brentano, J. Gableske, R. Krücken, N. Nicolay, A. Gelberg, P. Petkov, A. Gizon, J. Gizon, D. Bazzacco, C. Rossi Alvarez, G. de Angelis, S. Lunardi, P. Pavan, D. R. Napoli, S. Frauendorf, F. Dönau, R. V. F. Janssens, and M. P. Carpenter, "Detailed angular correlation analysis with 4π spectrometers: Spin determinations and multipolarity mixing measurements in ${ }^{128} \mathrm{Ba}$," Phys. Rev. C 58, 721-728 (1998).
[64] K. S. Krane and R. M. Steffen, "Determination of the $E 2 / M 1$ Multipole Mixing Ratios of the Gamma Transitions in ${ }^{110} \mathrm{Cd}$," Phys. Rev. C 2, 724-734 (1970).
[65] K.S. Krane, R.M. Steffen, and R.M. Wheeler, "Directional correlations of gamma radiations emitted from nuclear states oriented by nuclear reactions or cryogenic methods," At. Data Nucl. Data Tables 11, 351 - 406 (1973).
[66] A. Linnemann, Das HORUS-Würfelspektrometer und Multiphononanregungen in ${ }^{106} \mathrm{Cd}$, Ph.D. thesis, Universität zu Köln (2006).
[67] L. Bettermann, C. Fransen, S. Heinze, J. Jolie, A. Linnemann, D. Mücher, W. Rother, T. Ahn, A. Costin, N. Pietralla, and Y. Luo, "Candidates for the onephonon mixed-symmetry state in ${ }^{130} \mathrm{Xe}$," Phys. Rev. C 79, 034315 (2009).
[68] S. Mukhopadhyay, D.C. Biswas, S.K. Tandel, L.S. Danu, B.N. Joshi, G.K. Prajapati, Somnath Nag, T. Trivedi, S. Saha, J. Sethi, R. Palit, and P.K. Joshi, "Coexisting shape- and high-K isomers in the shape transitional nucleus ${ }^{188} \mathrm{Pt}$," Phys. Lett. B 739, $462-467$ (2014).
[69] A. Vogt, B. Birkenbach, P. Reiter, A. Blazhev, M. Siciliano, J. J. Valiente-Dobón, C. Wheldon, D. Bazzacco, M. Bowry, A. Bracco, B. Bruyneel, R. S. Chakrawarthy, R. Chapman, D. Cline, L. Corradi, F. C. L. Crespi, M. Cromaz, G. de Angelis, J. Eberth, P. Fallon, E. Farnea, E. Fioretto, S. J. Freeman, A. Gadea, K. Geibel, W. Gelletly, A. Gengelbach, A. Giaz, A. Görgen, A. Gottardo, A. B. Hayes, H. Hess, H. Hua, P. R. John, J. Jolie, A. Jungclaus, W. Korten, I. Y. Lee, S. Leoni, X. Liang, S. Lunardi, A. O. Macchiavelli, R. Menegazzo, D. Mengoni, C. Michelagnoli, T. Mijatović, G. Montagnoli, D. Montanari, D. Napoli, C. J. Pearson, L. Pellegri, Zs. Podolyák, G. Pollarolo, A. Pullia, F. Radeck, F. Recchia, P. H. Regan, E. Şahin, F. Scarlassara, G. Sletten, J. F. Smith, P.-A. Söderström, A. M. Stefanini, T. Steinbach, O. Stezowski, S. Szilner,
B. Szpak, R. Teng, C. Ur, V. Vandone, D. Ward, D. D. 1456 Warner, A. Wiens, and C. Y. Wu, "High-spin structure ${ }_{1457}$ of ${ }^{134} \mathrm{Xe}$," Phys. Rev. C 93, 054325 (2016).

1458 70] A. Vogt, B. Birkenbach, P. Reiter, A. Blazhev, M. Sicil- 1459 iano, K. Hadyńska-Klęk, J. J. Valiente-Dobón, C. Whel- 1460 don, E. Teruya, N. Yoshinaga, K. Arnswald, D. Bazzacco, 1461 M. Bowry, A. Bracco, B. Bruyneel, R. S. Chakrawarthy, 1462 R. Chapman, D. Cline, L. Corradi, F. C. L Crespi, 1463 M. Cromaz, G. de Angelis, J. Eberth, P. Fallon, 1464 E. Farnea, E. Fioretto, S. J. Freeman, B. Fu, A. Gadea, 1465 K. Geibel, W. Gelletly, A. Gengelbach, A. Giaz, A. Gör- 1466 gen, A. Gottardo, A. B. Hayes, H. Hess, R. Hirsch, 1467 H. Hua, P. R. John, J. Jolie, A. Jungclaus, L. Kaya, 1468 W. Korten, I. Y. Lee, S. Leoni, L. Lewandowski, X. Liang, 1469 S. Lunardi, A. O. Macchiavelli, R. Menegazzo, D. Men-1470 goni, C. Michelagnoli, T. Mijatović, G. Montagnoli, 1471 D. Montanari, C. Müller-Gatermann, D. Napoli, C. J. 1472 Pearson, L. Pellegri, Zs. Podolyák, G. Pollarolo, A. Pul-1473 lia, M. Queiser, F. Radeck, F. Recchia, P. H. Regan, 1_{144} D. Rosiak, N. Saed-Samii, E. Şahin, F. Scarlassara, 1475 D. Schneiders, M. Seidlitz, B. Siebeck, G. Sletten, J. F. 1476 Smith, P.-A. Söderström, A. M. Stefanini, T. Steinbach, 1477 O. Stezowski, S. Szilner, B. Szpak, R. Teng, C. Ur, 1478 V. Vandone, D. D. Warner, A. Wiens, C. Y. Wu, and ${ }_{1479}$ K. O. Zell, "Isomers and high-spin structures in the ${ }_{1480}$ $N=81$ isotones ${ }^{135} \mathrm{Xe}$ and ${ }^{137} \mathrm{Ba}, "$ Phys. Rev. C 95, 1481 024316 (2017).
[71] T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, and 1483 D. R. LaFosse, "Systematic search of $\pi h_{11 / 2} \otimes \nu h_{11 / 2}$ chi- 1484 ral doublet bands and role of triaxiality in odd-odd $\mathrm{z}=551485$ isotopes: ${ }^{128,130,132,134}$ Cs," Phys. Rev. C 67, 0443191486 (2003).
[72] R. L. Lozeva, G. S. Simpson, H. Grawe, G. Neyens, L. A. 1488 Atanasova, D. L. Balabanski, D. Bazzacco, F. Becker, 1489 P. Bednarczyk, G. Benzoni, N. Blasi, A. Blazhev, 1490 A. Bracco, C. Brandau, L. Cáceres, F. Camera, S. K. ${ }_{1491}$ Chamoli, F. C. L. Crespi, J.-M. Daugas, P. De- 1492 tistov, M. De Rydt, P. Doornenbal, C. Fahlander, 1493 E. Farnea, G. Georgiev, J. Gerl, K. A. Gladnishki, 1494 M. Górska, J. Grębosz, M. Hass, R. Hoischen, G. Ilie, 1495 M. Ionescu-Bujor, A. Iordachescu, J. Jolie, A. Jung-1496 claus, M. Kmiecik, I. Kojouharov, N. Kurz, S. P. Lak-1497 shmi, G. Lo Bianco, S. Mallion, A. Maj, D. Monta- 1498 nari, O. Perru, M. Pfützner, S. Pietri, J. A. Pinston, 1499 Zs. Podolyák, W. Prokopowicz, D. Rudolph, G. Rusev, 1500 T. R. Saitoh, A. Saltarelli, H. Schaffner, R. Schwengner, 1501 S. Tashenov, K. Turzó, J. J. Valiente-Dobón, N. Ver-1502 meulen, J. Walker, E. Werner-Malento, O. Wieland, and ${ }_{1503}$ H.-J. Wollersheim, "New sub- μ s isomers in ${ }^{125,127,129} \mathrm{Sn}_{1504}$ and isomer systematics of ${ }^{124-130} \mathrm{Sn}$," Phys. Rev. C 77,1505 064313 (2008).
[73] A. Astier, M. G. Porquet, Ts. Venkova, Ch. Theisen, 1507 G. Duchêne, F. Azaiez, G. Barreau, D. Curien, I. De-1508 loncle, O. Dorvaux, B. J. P. Gall, M. Houry, R. Lu-1509 cas, N. Redon, M. Rousseau, and O. Stézowski, "High-1510 spin structures of ${ }^{124-131} \mathrm{Te}$: Competition of proton- and ${ }_{1511}$ neutron-pair breakings," Eur. Phys. J. 50, 1-24 (2014). ${ }^{1512}$
[74] S. Juutinen, P. Šimeček, P. Ahonen, M. Carpenter, 1513 C. Fahlander, J. Gascon, R. Julin, A. Lampinen, T. Lön-1514 nroth, J. Nyberg, A. Pakkanen, M. Piiparinen, K. Schif-1515 fer, G. Sletten, S. Törmänen, and A. Virtanen, "Shape 1516 coexistence in the transitional ${ }^{133}$ Ba nucleus," Phys. Rev. 1517 C 51, 1699-1707 (1995).
[75] R. Ma, E. S. Paul, D. B. Fossan, Y. Liang, N. Xu,1519
R. Wadsworth, I. Jenkins, and P. J. Nolan, "Rotational bands in ${ }^{135} \mathrm{Ce}$: Collective prolate and oblate rotation," Phys. Rev. C 41, 2624-2634 (1990).
76] C. M. Petrache, R. Venturelli, D. Vretenar, D. Bazzacco, G. Bonsignori, S. Brant, S. Lunardi, M. A. Rizzutto, C. Rossi Alvarez, G. de Angelis, M. De Poli, and D. R. Napoli, "High-spin states in ${ }^{137} \mathrm{Nd}$: A large variety of collective rotations," Nucl. Phys. A 617, 228 - 248 (1997).
[77] S. M. Mullins, A. Omar, L. Persson, D. Prévost, J. C. Waddington, H. R. Andrews, G. C. Ball, A. GalindoUribarri, V. P. Janzen, D. C. Radford, D. Ward, T. E. Drake, D. B. Fossan, D. LaFosse, P. Vaska, M. Waring, and R. Wadsworth, "Perturbed alignments within an $i_{13 / 2}$ neutron intruder band in ${ }^{141} \mathrm{Gd}$," Phys. Rev. C 47, R2447-R2451 (1993).
[78] A. Schmidt, I. Schneider, H. Meise, I. Wiedenhöver, O. Stuch, K. Jessen, D. Weisshaar, C. Schumacher, P. von Brentano, G. Sletten, B. Herskind, M. Bergström, and J. Wrzesinski, "High Spin Structure in ${ }^{123}$ Xe," Eur. Phys. J 2, 21-23 (1998).
[79] Samuel M. Harris, "Higher Order Corrections to the Cranking Model," Phys. Rev. 138, B509-B513 (1965).
[80] E. Teruya, N. Yoshinaga, K. Higashiyama, and A. Odahara, "Shell-model calculations of nuclei around mass 130," Phys. Rev. C 92, 034320 (2015).
[81] Koji Higashiyama and Naotaka Yoshinaga, "Pairtruncated shell-model analysis of nuclei around mass 130," Phys. Rev. C 83, 034321 (2011).
[82] B. A. Brown and W. D. M. Rae, "The Shell-Model Code NuShellX@MSU," Nucl. Data Sheets 120, 115 - 118 (2014).
[83] N. Shimizu, "Nuclear shell-model code for massive parallel computation, "KSHELL"," (2013), arXiv:1310.5431 [nucl-ph].
[84] B. A. Brown, N. J. Stone, J. R. Stone, I. S. Towner, and M. Hjorth-Jensen, "Magnetic moments of the 2_{1}^{+}states around ${ }^{132} \mathrm{Sn}$," Phys. Rev. C 71, 044317 (2005).
[85] R. Machleidt, "High-precision, charge-dependent bonn nucleon-nucleon potential," Phys. Rev. C 63, 024001 (2001).
[86] E. Caurier, F. Nowacki, A. Poves, and K. Sieja, "Collectivity in the light xenon isotopes: A shell model study," Phys. Rev. C 82, 064304 (2010).
[87] E. Caurier, F. Nowacki, and A. Poves, "Shell model description of the $\beta \beta$ decay of ${ }^{136} \mathrm{Xe}$," Phys. Lett. B 711, $62-64$ (2012).
[88] L. Coraggio, L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, "Calculation of gamow-teller and two-neutrino double- β decay properties for ${ }^{130} \mathrm{Te}$ and ${ }^{136} \mathrm{Xe}$ with a realistic nucleon-nucleon potential," Phys. Rev. C 95, 064324 (2017).
[89] Chong Qi, "Shell-model configuration-interaction description of quadrupole collectivity in te isotopes," Phys. Rev. C 94, 034310 (2016).
[90] Chong Qi and Z. X. Xu, "Monopole-optimized effective interaction for tin isotopes," Phys. Rev. C 86, 044323 (2012).
[91] J. Gizon, A. Gizon, and D. J. Horen, "Band structure in ${ }^{131,132,133} \mathrm{Ba}$ observed by $\left({ }^{12} \mathrm{C}, \mathrm{xn}\right)$ reactions," Nucl. Phys. A 252, $509-523$ (1975).
[92] A. Zemel, C. Broude, E. Dafni, A. Gelberg, M. B. Goldberg, J. Gerber, G. J. Kumbartzki, and K. H. Speidel, "Magnetic moment of the $19 / 2^{+}$isomer in ${ }^{135}$ ce," Z. Phys. A - Atoms and Nuclei 304, 269-272 (1982).

1520 [9
521 . T. Zhang, M. Sferrazza, R. H. Mayer, Z. W. 1527 Grabowski, P. Bhattacharyya, P. J. Daly, R. Broda, $1 \mathbf{1 5 8}$ [95] T. Lönnroth, J. Hattula, H. Helppi, S. Juutinen, B. Fornal, W. Królas, T. Pawłat, G. de Angelis, D. Baz-1529 zacco, S. Lunardi, and C. Rossi-Alvarez, "Yrast excita-1530 1531 [96] Shi Zhu-yi, Liu Yong, and Sang Jian-ping, "The nuclear tions in ${ }^{129} \mathrm{Te}$," Z. Phys. A 353, 11-12 (1995).
[94] A. Dewald, "Transition probabilities in transitional nuclei 1532 in the $A=130$ region," Prog. Part. Nucl. Phys. 28, 409 - $\mathbf{1 5 3 3}$ structure and backbending phenomenon for ${ }^{114-130} \mathrm{Xe}$ isotopes," Chinese Phys. 10, 282 (2001).

[^0]: ${ }^{\text {a }}$ Corresponding author: levent.kaya@ikp.uni-koeln.de
 ${ }^{\mathrm{b}}$ Deceased.

