

UWS Academic Portal

High-spin structure in the transitional nucleus 131Xe

Kaya, L.; Vogt, A.; Reiter, P.; Siciliano, M.; Birkenbach, B.; Blazhev, A.; Coraggio, L.; Teruya, E.; Yoshinaga, N.; Higashiyama, K.; Arnswald, K.; Bazzacco, D.; Bracco, A.; Bruyneel, B.; Corradi, L.; Crespi, F.C.L.; de Angelis, G.; Eberth, J.; Farnea, E.; Fioretto, E.; Fransen, C.; Fu, B.; Gadea, A.; Gargano, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Hadyska-Klk, K.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Itaco, N.; John, P.R.; Jolie, J.; Jungclaus, A.; Korten, W.; Leoni, S.; Lewandowski, L.; Lunardi, S.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatovi, T.; Montagnoli, G.; Montanari, D.; Müller-Gatermann, C.; Napoli, D.; Podolyák, Zs.; Pollarolo, G.; Pullia, A.; Queiser, M.; Recchia, F.; Rosiak, D.; Saed-Samii, N.; ahin, E.; Scarlassara, F.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Smith, J.F.; Söderström, P.-A.; Stefanini, A.M.; Steinbach, T.; Stezowski, O.; Szilner, S.; Szpak, B.; Ur, C.; Valiente-Dobón, J.J.; Wolf, K.; Zell, K.O.

Published in: Physical Review C

DOI: 10.1103/PhysRevC.98.014309

Published: 06/07/2018

Document Version Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):

Kaya, L., Vogt, A., Reiter, P., Siciliano, M., Birkenbach, B., Blazhev, A., ... Zell, K. O. (2018). High-spin structure in the transitional nucleus 131Xe: Competitive neutron and proton alignment in the vicinity of the N = 82 shell closure. Physical Review C, 98(1), [014309]. https://doi.org/10.1103/PhysRevC.98.014309

General rights

Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

High-spin structure in the transitional nucleus 131 Xe: Competitive neutron and proton alignment in the vicinity of the N = 82 shell closure

3 4 5 6 7 8 9	 L. Kaya,^{1, a} A. Vogt,¹ P. Reiter,¹ M. Siciliano,^{2,3} B. Birkenbach,¹ A. Blazhev,¹ L. Coraggio,⁴ E. Teruya,⁵ N. Yoshinaga,⁵ K. Higashiyama,⁶ K. Arnswald,¹ D. Bazzacco,⁷ A. Bracco,⁸ B. Bruyneel,⁹ L. Corradi,³ F. C. L. Crespi,⁸ G. de Angelis,³ J. Eberth,¹ E. Farnea,^{7, b} E. Fioretto,³ C. Fransen,¹ B. Fu,¹ A. Gadea,¹⁰ A. Gargano,⁴ A. Giaz,⁸ A Görgen,^{11, 12, 13} A. Gottardo,³ K. Hadyńska-Klęk,³ H. Hess,¹ R. Hetzenegger,¹ R. Hirsch,¹ N. Itaco,^{4, 14} P. R. John,¹⁵ J. Jolie,¹ A. Jungclaus,¹⁶ W. Korten,¹⁷ S. Leoni,⁸ L. Lewandowski,¹ S. Lunardi,^{2, 7} R. Menegazzo,⁷ D. Mengoni,^{18, 2, 7} C. Michelagnoli,¹⁹ T. Mijatović,²⁰ G. Montagnoli,^{2, 7} D. Montanari,^{2, 7} D. Rosiak,¹ N. Saed-Samii,¹ E. Şahin,²³ F. Scarlassara^{2, 7} D. Schneiders¹ M. Seidlitz,¹ B. Siebeck,¹ I. F. Smith,²⁴ P. A. Söderström,²⁵ A. M. Stefanini,³ T.
10	Steinbach, ¹ O. Stezowski, ²⁶ S. Szilner, ²⁰ B. Szpak, ²⁷ C. Ur, ⁷ J. J. Valiente-Dobón, ³ K. Wolf, ¹ and K. O. Zell ¹
12 13 14	¹ Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany ² Dipartimento di Fisica e Astronomia, Università di Padova, I-35131 Padova, Italy ³ Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy ⁴ Istituto Nazionale di Fisica Nucleare, Sazione di Nuclei I 80196 Nuclei Italy
15 16 17	⁵ Department of Physics, Saitama University, Saitama City 338-8570, Japan ⁶ Department of Physics, Chiba Institute of Technology, Narashino, Chiba 275-0023, Japan ⁷ Istituto Nazionale di Fisica Nucleare, Sezione di Padova, 1-35131, Padova, Italy
19 20	 ⁸Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, I-20133 Milano, Italy ⁹CEA Saclay, Service de Physique Nucleaire, F-91191 Gif-sur-Yvette, France ¹⁰Instituto de Física Corruscular, CSIC Universidad de Volencia, F /6071 Volencia, Spain
21 22 23	¹¹ Department of Physics, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway ¹² Institut de Recherche sur les lois Fondamentales de l'Univers – IRFU, CEA do Social Contra CEA do Social Contra Victor Codor France
24 25 26	 ¹³Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ¹⁴Dipartimento di Matematica e Fisica, Università degli Studi della Componio "Luici Vannitelli", viele 5, Li 2110, Consta, Italia
27 28 29	 ¹⁵Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany ¹⁶Instituto de Estructura de la Materia, CSIC, Madrid, E-28006 Madrid, Spain
30 31 32	¹⁸ Nuclear Physics Research Group, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, United Kingdom
33 34 35	 ¹⁹Institut Laue-Langevin (ILL), 38042 Grenoble Cedex 9, France. ²⁰Ruder Bošković Institute, HR-10 002 Zagreb, Croatia ²¹Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
36 37 38	 ²² Dipartimento di Fisica Teorica dell'Università di Torino and INFN, I-10125 Torino, Italy ²³ Department of Physics, University of Oslo, P. O. Box 1048 Blindern, N-0316 Oslo, Norway. ²⁴ SUPA, School of Engineering and Computing, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
39 40	²⁵ Extreme Light Infrastructure-Nuclear Physics (ELI-NP), 077125 Bucharest-Magurele, Romania ²⁶ Université de Lyon, Université Lyon-1, CNRS/IN2P3, UMP5292, UPNL E 60692 Villourbarra, Codor, Eronac
41 42 43	²⁷ Henryk Niewodniczański Institute of Nuclear Physics PAN, PL-31342 Kraków, Poland (Dated: June 20, 2018)
	The transitional nucleus ¹³¹ Xe is investigated after multinucleon transfer (MNT) in the ¹³⁶ Xe+ ²⁰⁸ Pb and ¹³⁶ Xe+ ²³⁸ U reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy and as an elusive reaction product in the fusion-evaporation reaction ¹²⁴ Sn(¹¹ B,p3n) ¹³¹ Xe employing the HORUS γ -ray array coupled to a double-sided silicon strip detector (DSSSD) at

naro, Italy and as an elusive reaction product in the fusion-evaporation reaction $C^{-1}Sn(C^{-1}B,p3n)^{-1}$ Xe employing the HORUS γ -ray array coupled to a double-sided silicon strip detector (DSSSD) at the University of Cologne, Germany. The level scheme of ^{131}Xe is extended to 5 MeV. A pronounced backbending is observed at $\hbar\omega \approx 0.4$ MeV along the negative-parity one-quasiparticle $\nu h_{11/2}(\alpha = -1/2)$ band. The results are compared to the high-spin systematics of the Z = 54isotopes and the N = 77 isotones. Large-scale shell-model calculations (LSSM) employing the PQM130, SN100PN, GCN50:82, SN100-KTH and a realistic effective interaction reproduce the experimental findings and provide guidance to elucidate the structure of the high-spin states. Further calculations in $^{129-132}$ Xe provide insight into the changing nuclear structure along the Xe chain towards the N = 82 shell closure. Proton occupancy in the $\pi 0h_{11/2}$ orbital is found to be decisive for the description of the observed backbending phenomenon.

PACS numbers: 23.20.Lv, 27.60.+j, 29.40.Gx,

46 47 Segrè chart, spanning the nuclei north-west of doubly- 100 1983, Lönnroth et al. [30] identified a large number of new 48 49 50 51 ⁵³ bitals give rise to a plethora of high-spin states. The ¹⁰⁶ troscopy study of the high-spin regime was performed by ⁵⁴ different deformation-driving properties of aligned $h_{11/2}$ ¹⁰⁷ Kerek *et al.* [31] in 1971 utilizing the ¹³⁰Te(α ,3n) reacso proton ($\gamma \approx 0^{\circ}$ in the Lund convention) or neutron 11/2 too tion at beam energies of 30 to 40 MeV. Three γ rays $_{56}$ ($\gamma \approx -60^{\circ}$) configurations cause both collective and non- $_{109}$ with energies of 642.4, 810.6 and 901.5 keV on top of the ⁵⁷ collective structures [1–5]. Transitional Xe nuclei in the ¹¹⁰ $J^{\pi} = 11/2^{-}_{1}$ state were found to form a $(21/2^{-}_{1}) \xrightarrow{901.5}_{11}$ ⁵⁸ $A \approx 130$ mass region, well described by assuming anhar-¹¹¹ $19/2^{-}_{1} \xrightarrow{810.6}_{15/2^{-}_{1}} \xrightarrow{642.4}_{11/2^{-}_{1}}$ negative-parity band. ⁵⁹ monic vibrations [6], are known for their softness with ¹¹² Furthermore, three γ rays with energies of 188.7, 389.0 so respect to γ deformation and form therefore an impor-ins and 991.6 keV were placed on top of the $J^{\pi} = 19/2^{-1}_{1}$ 61 tant link in the smooth evolution from spherical to de- 114 state. The 188.7-keV transition was observed as the 62 formed shapes [7–9]. High-j couplings in the high-spin $\frac{1}{115}$ $\frac{19}{21}$ $\frac{1}{19}$ $\frac{1}{21}$ decay of the positive-parity band. The regime form a variety of rotational bands. Their signa-ture splitting ($\alpha = \pm 1/2$) [10] is based on the unique-parity $h_{11/2}$ neutron-hole orbital. Many of the $A \approx 130$ nuclei show irregular yrast sequences in the high-spin regime, accompanied by a sudden increase of moment of Parity $h_{11/2} s_{1/2} s_{1/2} = 19/2_1^+$ state at 1805.7 keV was identified as an iso-nuclei show irregular yrast sequences in the high-spin Parity $\nu(h_{11/2}^{-2}s_{1/2}^{-1})$ configuration. The $J^{\pi} = 23/2_1^+$ state at Parity $\nu(h_{11/2}^{-2}s_{1/2}^{-1})$ configuration. The $J^{\pi} = 23/2_1^+$ state at Parity $\nu(h_{11/2}^{-2}s_{1/2}^{-1})$ configuration. The $J^{\pi} = 23/2_1^+$ state at Parity $\mu(h_{11/2}^{-2}s_{1/2}^{-1})$ configuration. The $J^{\pi} = 23/2_1^+$ state at Parity $\mu(h_{11/2}^{-2}s_{1/2}^{-1})$ configuration. 68 inertia along the ground-state band. This phenomenon 120 Backbending and upbending phenomena in the yrast 69 called backbending [11] is explained as a band crossing of 121 bands of even-even Xe isotopes were systematically ob-⁷⁰ the ground-state band with an aligned two-quasiparticle ¹²² served in ¹¹²⁻¹³⁰Xe [33-35]. Figure 1 shows the evolution 71 72 occupied orbital. 73

74 76 77 79 ³⁶⁰ predictive power and suitability of various nuclear poten-¹³² bending emerges between the $J^{\pi} = 10_1^+$ and $J^{\pi} = 12_1^+$ ³¹ tials and models based on modern effective interactions ¹³³ states in ^{122,124,126}Xe and between the $J^{\pi} = 8_1^+$ and ³² in this region. Is is noteworthy that only a few studies ¹³⁴ $J^{\pi} = 10_1^+$ states in ^{128,130}Xe. This behavior is explained ⁸³ were performed from the shell-model point of view for ¹³⁵ by the crossing of a quasi ground band and another quathe description of the backbending [17-19]. 84

 $_{20}$ cay [20–23], (γ, γ') [24–26] reactions or Coulomb exci- $_{142}$ known. Compared to the even-mass neighbors of 132 Xe, at tation [27]. Like several odd-mass $50 \le Z, N \le 82$ 143 the decay of the $J^{\pi} = 10^+_1$ state is remarkably hindered 22 nuclei, ¹³¹Xe exhibits a long-lived $J^{\pi} = 11/2^-_1$ isomer. 144 $(T_{1/2} = 8.39(11) \text{ ms } [37])$. A fully-aligned $\nu h_{11/2}^{-2}$ two ^{11/2} ¹⁴⁵ neutron-hole configuration was assigned to the state [38]. ¹⁴⁶ The $J^{\pi} = 10^+_1$ state decays predominantly via an E3 ¹⁴⁷ γ ray to the $J^{\pi} = (7^-_1)$ state, competitive E2 decays

97 both Palmer et al. [27] and Irving et al. [29] studied low-⁹⁸ lying positive-parity states in ¹³¹Xe utilizing Coulomb The nuclei in the 50 $\leq Z, N \leq 82$ region of the \mathfrak{m} excitation and $(\alpha, xn\gamma)$ reactions, respectively. Later, in magic ¹³²Sn, are intriguing systems for the simultane- ¹⁰¹ low-lying states with one- and three-quasiparticle configous investigation of the shell structure as well as for col- 102 urations. Due to a lack of stable beam and target combilective degrees of freedom. Couplings of configurations 103 nations, studies of intermediate and high-spin states were involving the unique-parity high-j orbital $0h_{11/2}$ with 104 restricted by $(\alpha, xn\gamma)$ reactions [29–31] with small Ge(Li) configurations in the $2s_{1/2}$, $1d_{3/2}$, $1d_{5/2}$, and $0g_{7/2}$ or- 105 detector arrays at this time. The most detailed spec-

band, i.e. the quasiparticle level crossing between an un- 123 of the total aligned angular momentum for a given tranoccupied high-j intruder orbital and the most high-lying 124 sition $I_x = (I_x^i + I_x^f)/2$ with the total angular momenta 125 of the initial and final states $I_x^{i,f} = \sqrt{I^{i,f}(I^{i,f}+1) - K^2}$ In the majority of cases the theoretical investigations of 126 versus the rotational frequency $\hbar \omega = (E_i - E_f)/(I_x^i - E_f)$ such systems were carried out by means of the Interacting $_{127} I_x^f$ [36] for Xe isotopes with masses ranging from A =Boson Model (IBM) [9, 12, 13], mean-field methods [2, 14] $_{128}$ 117 to A = 132 along the yrast bands [32]. The experior the cranked shell model (CSM) [15, 16]. However, Xe 129 mental total aligned angular momentum shows a smooth isotopes have come within reach of advanced untruncated $_{130}$ evolution as a function of rotational frequency $\hbar\omega$ for the shell-model calculations, providing stringent tests of the 131 lighter midshell isotopes. Towards the shell closure, backiso siband with a neutron-aligned $\nu h_{11/2}^{-2}$ configuration [35]. The nucleus ¹³¹Xe is located in the proton midshell ¹³⁷ A distinct alignment is observed in the lower-mass neigh-the between the Z = 50 shell and the Z = 64 sub-shell ¹³⁸ bor of ¹³¹Xe, ¹³⁰Xe, where the energy difference between the Z = 50 shell and the Z = 64 sub-shell ¹³⁸ bor of ¹³¹Xe, ¹³⁰Xe, where the energy difference between the Z = 50 shell and the Z = 64 sub-shell ¹³⁸ bor of ¹³¹Xe, ¹³⁰Xe, where the energy difference between the Z = 50 shell and the Z = 64 sub-shell ¹³⁸ bor of ¹³¹Xe, ¹³⁰Xe, where the energy difference between the $J^{\pi} = 8^{+}_{1}$ states is only 276 keV. In shell closure. Previous experiments on ¹³¹Xe focused ¹⁴⁰ the higher-mass neighbor of ¹³¹Xe, ¹³²Xe, the $J^{\pi} = 6^{+}_{1}$ primarily on low-spin excitations observed after β de-¹⁴¹ state is still tentative and the $J^{\pi} = 8^{+}_{1}$ state is un-the state is still tentative and the $J^{\pi} = 8^{+}_{1}$ state is un- $J^{\pi} = 3/2^+_1$ ground state [28]. By the end of the 1970s, 148 were not observed yet. Consequently, it is likely that 149 the $J^{\pi} = 8^+_1$ state is located very close in energy to the 150 $J^{\pi} = 10^+_1$ isomer, resulting in a pronounced backbend-¹⁵¹ ing. This assumption is supported by shell-model calcu-152 lations [39]. To shade light on the nuclear structure of ¹⁵³ 132 Xe around the $J^{\pi} = 10^+_1$ state, the high-spin struc-

^a Corresponding author: levent.kaya@ikp.uni-koeln.de

^b Deceased.

Figure 1. Total aligned angular momentum against the rotational frequency $\hbar\omega$ for the yeast bands in the Xe isotopes with masses ranging from A = 117 to A = 132. For definitions see text. Going towards the N = 82 shell closure, backbending occurs between the $J^{\pi} = 10^+_1$ and 12^+_1 states in ¹²⁶Xe and between the $J^{\pi} = 8^+_1$ and $J^{\pi} = 10^+_1$ states in ^{128,130}Xe. In ¹³²Xe the position of the $J^{\pi} = 8^+_1$ state is not known to date. Data extracted from Ref. [32].

¹⁵⁴ tures of the odd-mass neighboring nuclei can be used to ¹⁹¹ alignment similar to 125 Xe [45], however, no theoretical ¹⁵⁵ investigate the inert core ¹³²Xe by means of a semiclas- ¹⁹² description is available in the literature to date. is sical description within the particle-plus-rotor picture. In Going towards the N = 82 shell closure, ¹²⁹Xe is the ¹⁵⁷ In ¹³³Xe the single-particle character dominates over the ¹⁹⁴ last nucleus which can still be sufficiently populated by ¹⁵⁸ collective character [39].

159 100 and 127 Xe, both low-spin structures from ³He- and α - 107 level scheme of the negative-parity ground-state band 101 induced reactions [40, 41] and elaborate high-spin infor- 198 ($\alpha = -1/2$) up to the $J^{\pi} = 35/2^{-}_{1}$ state at 5194 keV ¹⁶² mation from heavy-ion reactions are available. High-spin ¹⁹⁹ utilizing a ⁹Be-induced fusion-evaporation reaction on 163 states of ¹²⁵Xe were studied at the OSIRIS Compton- 200 a ¹²⁴Sn target at a beam energy of 36 MeV. The Nils-¹⁶⁴ suppressed γ -ray spectrometer via the ¹¹⁶Cd(¹³C,4n) ²⁰¹ son configuration for the band was determined to be 165 reaction by Granderath et al. [42] and via the 202 $\nu h_{11/2}$ [505] 11/2. An alignment in the negative-parity 167 to 8.7 MeV. Later, the level scheme and high-spin band 204 approx. $\hbar\omega \approx 0.45$ MeV. Cranked shell-model calcula-168 structures were significantly extended by Moon et al. [15] 205 tions predicted an alignment of two $h_{11/2}$ protons at and Al-Khatib *et al.* [44], respectively. The favored $206 \ \hbar\omega \approx 0.5$ MeV. However, the alignment of two $h_{11/2}$ neu-170 ($\pi = -1, \alpha = -1/2$) negative-parity yrast band built 207 trons was predicted at $\hbar\omega \approx 0.27$ MeV. Since the pro-171 on the $J^{\pi} = 11/2^{-}_{1}$ state is known up to $J^{\pi} = (47/2^{-})$. 208 ton crossing frequency matched the experimental obser-172 An alignment at a frequency of $\hbar\omega \approx 0.48$ MeV was ob- 209 vation, the backbending was explained as an alignment 173 served. Granderath et al. [42] proposed a triaxial defor- 210 of two $h_{11/2}$ protons. Furthermore, particle-plus-rotor 174 mation in the negative-parity band according to calcula- 211 model calculations suggested a triaxial deformation with 175 tions in the framework of the triaxial rotor-plus-particle 212 $\gamma \approx -30^{\circ}$ in the negative-parity ground-state band. (TRP) model. The crossing in the $(\pi = -1, \alpha = -1/2)_{213}$ This work focuses on the hitherto unknown high-spin 176 177 band was assigned to an alignment of a second pair of 214 structures above the 2518-keV state in the negative-178 $h_{11/2}$ neutrons according to theoretical Routhians from 215 parity band in ¹³¹Xe. Excited states in ¹³¹Xe were ¹¹⁷ CSM calculations. The alignment of the first pair of ²¹⁶ populated in three different experiments. Multinucleon $h_{11/2}$ neutrons was assumed to be blocked. The findings h_{217} transfer reactions have proved to be an efficient way ¹⁸¹ were reproduced by Moon *et al.* [15] who assigned the ²¹⁸ for the population of intermediate to high-spin states. negative-parity yrast band a $\nu h_{11/2}$ [523] 7/2 Nilsson con-¹⁰³ figuration from total Routhian surface (TRS) and CSM ²¹⁰ Advanced GAmma Tracking Array (AGATA) [46] and 184 calculations.

185 after ⁴⁸Ca(⁸²Se,3*n*) reactions at 275 MeV [43]. The ²²³ ployed to study transitions in ¹³¹Xe after ¹³⁶Xe + ²⁰⁸Pb ¹³⁷ negative-parity ground-state band was extended up to ²²⁴ and ¹³⁶Xe + ²³⁸U multinucleon transfer. Furthermore, ¹³⁸ 9.5 MeV and a spin of $J^{\pi} = (51/2^{-})$. A band crossing ²²⁵ ¹³¹Xe was populated in a ¹²⁴Sn(¹¹B, p3n)¹³¹Xe fusion-

¹⁹⁵ means of heavy-ion reactions with stable beams heavier For the lower odd-mass neighbors of ¹³¹Xe, ¹²⁵Xe ¹⁹⁶ than A = 4. In 2016, Huang *et al.* [16] extended the 48 Ca(82 Se,5n) reaction by Wiedenhöver *et al.* [43] up 203 ground-state band was found at a crossing frequency of

²²¹ the PRISMA magnetic mass spectrometer [47–49] at the In ¹²⁷Xe, high-spin states were throroughly studied 222 Laboratori Nazionali di Legnaro (LNL, Italy) was em-¹⁸⁹ was observed at slightly lower frequencies compared to ²²⁶ evaporation reaction employing the High-efficiency Ob-¹⁹⁰ ¹²⁵Xe. This observation corroborated a $\nu h_{11/2}^{-3}$ neutron ²²⁷ servatory for γ -Ray Unique Spectroscopy (HORUS) [50] 228 at the Institute of Nuclear Physics, University of Cologne. 279 229 The γ -ray array was coupled to a double-sided silicon 230 strip detector (DSSSD) [51] for the detection of evaporated protons. 231

232 233 setup and data analysis of the three experiments are de- 283 cated at the Institute for Nuclear Physics, University 234 235 Sec. III. A comparison with results from modern shell- 285 ¹²⁴Sn target which was evaporated on a 2.7-mg/cm² ²³⁶ model calculations is presented in Sec. IV before the pa-²⁸⁶ ^{nat.} Ta backing. All residual reaction products were ²³⁷ per closes with a summary and conclusions in Sec. V.

EXPERIMENTAL PROCEDURE AND DATA II. 238 ANALYSIS 239

$^{136}\mathrm{Xe}$ + $^{208}\mathrm{Pb}$ and $^{136}\mathrm{Xe}$ + $^{238}\mathrm{U}$ multinucleon 240 transfer 241

242 243 ²⁴⁴ experiment in the five-neutron stripping channel at the ³⁰¹ background emerging from the dominating ^{131,130}Cs neu-245 Laboratori Nazionali di Legnaro (LNL), Italy. In the 302 tron evaporation channels. By setting a gate on evap-246 first experiment a 6.84 MeV/nucleon ¹³⁶Xe beam, deliv- 303 orated charged particles, the peak to background ratio 247 248 onto a 1-mg/cm² ²⁰⁸Pb target. The Advanced GAmma 305 For this reason, evaporated charged particles were de-249 ²⁵¹ electronically segmented high-purity Ge (HPGe) detec- ³⁰⁸ gular range from 118° to 163° with respect to the beam 252 tors in three triple cryostats [53] to measure γ rays from 300 axis. The 310-µm thick silicon disk was produced by 253 excited states. The array was placed at a distance of 310 RADCON Ltd. (Zelenograd, Russia) and mounted and 254 18.8 cm from the target position. Details on the setup 311 bonded onto printed circuit boards at the University of 255 and data analysis are given in Refs. [54, 55]. In the sec- 312 Lund, Sweden. The active detector area is divided into 256 ond experiment, the PIAVE+ALPI accelerator provided 313 64 radial segments (sectors) on the p-type junction side ²⁵⁷ a ¹³⁶Xe beam with an energy of 7.35 MeV/nucleon and a ³¹⁴ and into 32 annular segments (rings) on the ohmic n-side 258 beam current of 2 pnA to subsequently bombard two dif- 315 facing the target. Each two adjacent ring signals were $_{259}$ ferent 238 U targets with thicknesses of 1 and 2 mg/cm². $_{316}$ merged together and read out, in order to distribute the 260 A 0.8-mg/cm² Nb backing faced the beam. AGATA was 317 32 rings to a total of 16 data acquisition channels. Fur-261 employed in its full demonstrator configuration with 15 318 ther information and a detailed characterization of the 262 HPGe detectors in five triple cryostats placed in the nom- 319 detector are given in Ref. [51]. The DSSSD was shielded 263 inal position, 23.5 cm away from the target. Information 320 against backscattered beam particles by a 25-µm thick 264 on the data analysis of this experiment is comprised in 321 tantalum sheet held in place by a 3-µm Tesa® adhesive 265 Ref. [56]. In both experiments the light projectile-like 322 applied onto a 2-µm polyethylene terephthalate carrier 266 reaction fragments of interest were identified by the mag- 323 foil [59]. The thickness of the Ta sheet was chosen in 267 netic spectrometer PRISMA [47-49] placed at the reac- 324 such a way that only evaporated protons could reach the ²⁶⁸ tion's grazing angle of $\theta_{\text{lab}} = 42^{\circ}$ in the ¹³⁶Xe + ²⁰⁸Pb ³²⁵ Si detector disk. ²⁶⁹ experiment and $\theta_{\text{lab}} = 50^{\circ}$ in the ¹³⁶Xe + ²³⁸U experi-³²⁶ Coincident events were processed and recorded uti-270 ment, respectively. Pulse-shape analysis of the digitized 327 lizing the synchronized 80-MHz XIA® Digital Gamma 271 detector signals was applied to determine the individual 328 Finder (DGF) data-acquisition system and stored to 272 273 274 the individual γ -ray energies, determine the first inter- 331 prompt $\gamma\gamma$ events and 3×10^6 proton-gated $\gamma\gamma$ events 275 action point of the γ ray in the germanium and, thus, 332 were recorded. Events were sorted into (i) a general sym-276 the emission angle. Together with the kinematic infor- 333 metrized two-dimensional matrix to study $\gamma\gamma$ coincidence 277 mation from PRISMA, a precise Doppler correction was 334 relations, (ii) two three-dimensional cubes for DSSSD-278 performed on a event-by-event basis.

$^{11}B + ^{124}Sn$ fusion evaporation В.

Excited states in ¹³¹Xe were populated via the fusion-²⁸¹ evaporation reaction ${}^{124}Sn({}^{11}B, p3n){}^{131}Xe$. A 54-MeV This paper is organized as follows: the experimental 282 ¹¹B beam, delivered by the FN Tandem accelerator loscribed in Sec. II, followed by the experimental results in 284 of Cologne, impinged onto a 3-mg/cm² 95.3%-enriched 287 stopped in the target layers. γ rays from excited states were measured employing the HORUS γ -ray array [50] ²⁸⁹ comprising 14 HPGe detectors, six of them equipped with 290 BGO Compton suppression shields. The detectors are ²⁹¹ positioned on the eight corners and six faces of a cube ge-²⁹² ometry. The count rate of the individual HPGe crystals was maintained around 18 kHz during the experiment.

Compared to preceding α -induced reactions [29–31] 294 295 a ¹¹B beam is better suited for the population of the 296 high-spin regime. Nevertheless, at a beam energy of 297 54 MeV, several fusion-evaporation codes compute the ²⁹⁸ relative cross section for the population of 131 Xe to be Excited states in ¹³¹Xe were populated in (i) a ¹³⁶Xe + ²⁹⁹ in the range of less than 1%. A detection of evaporated 208 Pb, and (ii), in a 136 Xe + 238 U multinucleon-transfer 300 charged particles is imperative to cope with the large ered by the PIAVE+ALPI accelerator complex, impinged 304 for the p3n channel 131 Xe can be enhanced significantly. Tracking Array (AGATA) [46] was employed in a first 306 tected with an annular double-sided silicon strip detector demonstrator configuration [52] with nine large-volume 307 (DSSSD) mounted at backward direction covering an an-

interaction points within the HPGe shell [57], allowing 320 disk. The data were analyzed offline using the socothe Orsay forward-tracking algorithm [58] to reconstruct $_{330}$ V2 [60] and TV [61] codes. A total number of 1.5×10^{10} 335 Ge-Ge and Ge-Ge-Ge coincidences, and (iii) a total of

336 eight group matrices each corresponding to Ge detec-337 tor pairs with relative angles $\theta_{1,2} \in \{35, 45, 90, 135, 145\}$ 338 with respect to the beam axis, and angles $\phi \in$ $\{\pm 270, \pm 215, \pm 180, \pm, 55, 0\}$ between the planes spanned 340 by the Ge detectors and the beam axis to investigate mul-341 tipolarities via angular correlations. Spins of populated 342 states are investigated with the $\gamma\gamma$ angular-correlation 343 code CORLEONE [62, 63] employing the DCO (directional 344 correlation from oriented states) based on the phase con-³⁴⁵ vention by Krane, Steffen, and Wheeler [64, 65]. Differat ent hypotheses of involved spins J_1, J_2, J_3 and multipole-347 mixing ratios δ_1, δ_2 of two coincident γ rays in a cascade 348 $J_1 \xrightarrow{\delta_1} J_2 \xrightarrow{\delta_2} J_3$ are evaluated in χ^2 fits of the correlation function $W(\theta_1, \theta_2, \phi) \equiv W(J_1, J_2, J_3, \delta_1, \delta_2, \sigma)$ on ex-³⁵⁰ perimental intensities in the different angular-correlation ³⁵¹ groups. The width of the distribution of the magnetic $_{352}$ substates m, i.e. the width of the alignment distribution, 353 was found to be constant at $\sigma = 2.6$. More details on the angular-correlation analysis with CORLEONE are given in 355 Refs. [66, 67].

356

III. RESULTS

The final level scheme of 131 Xe deduced from the three 357 spectrum experiments is presented in Fig. 2. It is based on $\gamma\gamma$ coincidences, relative transition intensities, and an angular-359 correlation analysis. Energies of γ -ray transitions and 360 excitation energies are given in keV. Intensities of γ -ray 361 transitions above the $J^{\pi} = 11/2_1^-$ isomeric state are extracted from the HORUS experiment and normalized to 363 the 642-keV transition. Newly assigned γ -ray transitions 364 are marked with asterisks. 365

The beam-like Doppler-corrected singles γ -ray spec-367 tra of ^{131}Xe from the $^{136}Xe + ^{208}Pb$ and $^{136}Xe + ^{238}U$ AGATA experiments are shown in Figs. 3(a) and 3(c), 368 ³⁶⁹ respectively. The corresponding Xe mass distributions $_{370}$ are depicted in the insets Figs. 3(b) and 3(d). Ran-³⁷¹ dom background is significantly suppressed by gating on ³⁷² the prompt peak in the time-difference distribution be- ³⁹¹ 1131 keV are candidates for new transitions in ¹³¹Xe. $_{373}$ tween AGATA and PRISMA. Prominent transitions are $_{392}$ In the $^{11}B + ^{124}Sn$ fusion-evaporation experiment, a 374 marked with dotted lines to guide the eye. Energies, 393 particle trigger is crucial to cope with the significant $_{375}$ spin/parity assignments and relative in-beam intensities $_{394}$ contribution from xn evaporation channels in order to $_{376}$ of transitions in 131 Xe, observed in both AGATA ex- $_{395}$ achieve clean gating conditions for a $\gamma\gamma$ coincidence anal-380 $_{391}$ ray spectra exhibit eight hitherto known peaks and nine $_{400}$ HORUS γ -ray energy. Evaporated protons are expected 382 new transitions. None of the known low-spin positive- 401 in an energy range of approx. 1 to 6 MeV. Low-energy 383 parity excited states below 2 MeV [30, 31] were popu- 402 random coincidences are mainly caused by the detec- $_{384}$ lated. γ rays with energies of 188, 389, 642, 810, 901 and $_{403}$ tion of low-energy δ electrons and β particles. A gate 385 992 keV depopulating the hitherto known positive- and 404 on proton energies larger than 1 MeV is applied; in the 386 negative-parity states [31] above the $J^{\pi} = 11/2^{-}_{1}$ isomer 405 resulting $\gamma\gamma$ projection several transitions of the proton-³⁸⁷ are clearly visible in the spectra. In addition, the de- ⁴⁰⁶ evaporation channels ^{130,131}Xe are well visible above the $_{388}$ cays of the $J^{\pi} = 21/2^+_1$ and $17/2^-_1$ states at energies of $_{407}$ background. Remaining contaminant transitions from Cs $_{369}$ 444 and 794 keV are observed in the MNT experiments. $_{408}$ and Pt isotopes are marked by symbols in Fig. 3(e). 300 The peaks at 230, 473, 609, 634, 662, 671, 700, 915, and 409 The intensities of the coincident γ rays in the HORUS

Figure 2. (Color online) Level scheme assigned to 131 Xe in the present study. Transition and excitation energies are given in keV. Intensities of the cascades above the 164-keV isomer are deduced from the HORUS experiment and normalized to the 642-keV transition. New γ -ray transitions are marked in red with asterisks. See text for details.

periments, are summarized in the right part of Tab. I. 396 ysis. The projection of the proton-gated $\gamma\gamma$ matrix is Efficiency-corrected relative in-beam intensities in Tab. I 307 shown in Fig. 3(e). Evaporation residues are identified were determined for the ${}^{136}Xe + {}^{208}Pb$ experiment and 398 and selected in the matrix depicted in inset 3(f), where normalized to the 642-keV transition. In total, the γ - 300 the energy detected by the DSSSD is plotted versus the

Figure 3. (Color online) (a) Doppler-corrected γ -ray spectrum gated on ¹³¹Xe identified with PRISMA in the ¹³⁶Xe+²⁰⁸Pb experiment. Random background is subtracted with a gate on the prompt peak in the spectrum of time differences between AGATA and PRISMA. (c) Similar data from the ¹³⁶Xe+²³⁸U experiment. Both insets (b) and (d) represent the mass spectra of the Xe isotopes obtained with PRISMA. The applied mass gates for 131 Xe are marked black. (e) Projection of the $\gamma\gamma$ matrix gated on evaporated protons (cf. inset (f)) obtained in the HORUS fusion-evaporation reaction ${}^{11}\text{B} + {}^{124}\text{Sn}$. Remaining contaminant transitions are marked with symbols and dominant transitions from 131 Xe are marked with dashed lines to guide the eye.

411 All intensities are efficiency corrected and normalized to 432 coincident to the 642-keV transition. The γ -ray tran-413 414 415 416 417 418 419 the 642-keV transition. Coincidences are labeled with 420 filled arrow heads. The spectrum exhibits anticipated 421 coincidences at 810, 901, 189, 389 and 992 keV. Beside 422 transitions from ^{130,131}Cs, contaminant peaks are caused 423 by the ground-state band of ¹⁸⁸Pt [68] stemming from a 424 dominant fusion-evaporation reaction in the ¹⁸¹Ta back-425 ing of the target. All three known γ rays in the positive-426 427 parity band with energies of 189, 389 and 992 keV are ⁴²⁸ mutually coincident in the HORUS experiment and were ⁴²⁹ arranged according to their intensity balance as proposed

410 experiment are summarized in the left part of Tab. I. 431 1131 keV, observed in both AGATA experiments, are the intensity of the 642-keV transition. The uncertain- 433 sitions are also in coincidence with the 810-keV transities in the transition energies are ± 0.5 keV. Spin/parity 434 tion in Fig. 4(b). Previously, a 901-keV transition was assignments are supported by systematics, shell-model $_{435}$ placed parallel to the 3186 keV $\xrightarrow{992 \text{ keV}} 23/2_1^+ \xrightarrow{389 \text{ keV}}$ calculations and angular-correlation measurements. Var-ious HORUS prompt $\gamma\gamma$ -coincidence spectra are shown in Figs. 4(a) to 4(g). The decay of the $J^{\pi} = 11/2^{-}_{1}$ isomer is not observed due to the browner decay of the $J^{\pi} = 11/2^{-}_{1}$ isomer $I = 11/2^{-}_{1}$ i is not observed due to its long half-life of 11.8 days [28]. 438 Fig. 4(c). Coincidences as well as the intensity balance Figure 4(a) presents the γ -ray spectrum with a gate on ⁴³⁹ require the newly-observed 662-, 634- and 1131-keV tran- ${}_{\tt 440}$ sitions to be placed above the 2518-keV state. Gates on 441 those newly observed transitions are shown in Figs. 4(d) 442 to 4(f). All three γ rays are mutually coincident and, 443 thus, form a cascade. The intensity balance in the $\gamma\gamma$ 444 projection gated on the 901-keV transition suggests that $_{445}$ the 662-keV transition is directly feeding the 2518-keV 446 state. The intensity of the 634-keV γ -ray peak in the 447 $\gamma\gamma\text{-coincidence spectrum gated on 901 and 662 keV ex _{\tt 448}$ ceeds the one of the 1131-keV line. In accordance with 449 the intensity balance, the 634-keV transition is placed on 430 by Kerek *et al.* [31]. Unassigned peaks at 634, 662, and ⁴⁵⁰ top of the newly discovered state at 3180 keV to form the ⁴⁵¹ new 3814-keV state. The 1131-keV transition is placed on

7

Figure 4. Prompt HORUS $\gamma\gamma$ -double and $\gamma\gamma\gamma$ -triple coincidence-spectra with gates on (a) 642, (b) 810, (c) 901, (d) 662, (e) 634, (f) 1131, and (g) 810 & 1131 keV. Thin grey lines mark peak energies identified in both MNT experiments (see Tab. I). Coincidences are labeled by filled arrow heads.

452 top of the cascade to establish a new state at 4945 keV. 464 scheme is not feasible.

453 Furthermore, the intensity balance of the three new γ $_{\tt 454}$ rays determined in the AGATA experiment confirms this $_{\tt 465}$ 455 assignment. Also the $\gamma\gamma\gamma$ -triple coincidence spectrum 466 states are investigated utilizing the angular-correlation 456 457 458 2518-keV state. The maximum excitation energy of ap- 469 mental intensities of two coincident γ -ray transitions de-459 prox. 5 MeV is consistent with other populated reaction 470 duced from gates on depopulating transitions in the $\gamma\gamma$ 460 channels in both AGATA@LNL experiments [39, 69, 70]. 471 matrices related to the eight angular-correlation groups 461 Unassigned γ -ray transitions observed with AGATA and 472 are performed for each spin hypothesis. To benchmark 462 listed in Tab. I do not yield meaningful γ - γ coincidences 473 the validity of the angular correlation analysis, a fit of

In the HORUS experiment spins and parities of excited with gates on both the 810- and 1131-keV transitions 407 analysis described in Sec. II B. A fit of the theoretical supports a placement of the transitions on top of the 468 angular-distribution function $W(\theta_1, \theta_2, \phi)$ to the experi-463 in the HORUS experiment. A placement in the level 474 the $13^+ \rightarrow 12^+$ 417-keV transition in the well popu-475 lated 130 Cs channel is shown in Fig. 5(a). The ob-

8

476 tained multipole-mixing ratio $\delta_{exp.} = -0.11(4)$ repro-477 duces the evaluated value $\delta_{\text{lit.}} = -0.14(6)$ [71]. A further 478 benchmark angular-correlation distribution of the 810-479 keV transition in ¹³¹Xe, gated on the 642-keV transition, 480 is shown in Fig. 5(b). The multipolarity of the 642-keV γ ⁴⁸¹ ray is fixed to an E2 character, while the spin of the 1616-482 keV state is tested with values of J = 15/2, 17/2, and $_{483}$ 19/2. Obviously, a pure E2 hypothesis yields best results. Figure 5(c) shows the angular-correlation distribution of 485 the 901-810-keV cascade in ¹³¹Xe. Spin hypotheses of **486** J = 19/2, 21/2 and 23/2 were tested for the 2518-keV 487 state. Overall, the $J^{\pi} = 23/2^{-}$ hypothesis matches the 488 experimental values best ($\chi^2 = 1.7$). The previous tentative spin-parity assignment of $J^{\pi} = 21/2^{-}$ [31] has to be 489 revised. Using the same method, the spin of the newly 491 established excited state at 3180 keV is determined. The 492 angular distribution of the 662-keV decay is shown in Fig. 5(d). The J = 23/2 and 25/2 spin hypotheses show discrepancies between the experimental and the calcu-⁴⁹⁵ lated intensities in several correlation groups leading to 496 $\chi^2 = 3.1$ and $\chi^2 = 2.9$, respectively. Based on the ex-497 perimental data, a $J^{\pi} = 27/2^-_1$ assignment ($\chi^2 = 1.9$) 498 is most appropriate. Summarizing, there is strong evidence for an E2 character of the 662- and 634-keV transitions. No accurate analysis of the $\gamma\gamma$ angular correlations 500 for the weakly populated excited states at 3814 keV and 501 ⁵⁰² 4945 keV were possible due to insufficient statistics. How-503 ever, tentative spin assignments of $(31/2_1^-)$ and $(35/2_1^-)$ ⁵⁰⁴ are most probable due to isotopic systematics discussed 505 in Sec. IV A.

506

IV. DISCUSSION

507

Systematics along Z = 54A

Figure 6(a) shows the evolution of the negative-parity 508 yrast band states along the N = 77 isotones from Sn to 509 Gd [72-77]. The newly established states of 131 Xe are 510 marked with thicker lines. The reevaluated $J^{\pi} = 23/2^{-1}_{1}$ 511 ⁵¹² state in ¹³¹Xe is 7 keV higher in excitation energy com-⁵¹³ pared to the corresponding state in ¹²⁹Te, thus, the 2518- ⁵³⁰ vored negative-parity band along the odd-mass Xe iso-⁵¹⁴ keV state in ¹³¹Xe fits the systematics of $J^{\pi} = 23/2_1^-$ ⁵³¹ topes is presented in Fig. 6(c). The parameter i_x is de-515 states from ¹²⁹Te to ¹³³Ba. In contrast, the previous 532 termined by subtracting the collective part from the to-⁵¹⁶ $J^{\pi} = 21/2^{-}_{1}$ assignment would disrupt the smooth evo-⁵¹³ tal aligned angular momentum: $i_x = I_x - I_{x,coll}$, where ⁵¹⁴ lution of the $J^{\pi} = 21/2^{-}_{1}$ states in the N = 77 isotones. ⁵¹⁵ $I_{x,coll} = a\omega + c\omega^{3}$ follows the parametrization by Har-⁵¹⁶ The newly assigned $J^{\pi} = 27/2^{-}_{1}$ state at 3180 keV is lo-⁵³⁵ ris *et al.* [79]. For ¹³³Xe the collective Harris parametrizasign cated between the excitation energies of the $J^{\pi} = 27/2_1^-$ sign tion fails due to a non-rotational single particle char-520 states in both neighboring odd-mass nuclei, which further 537 acter of this isotope. All Xe isotopes exhibit a pro-⁵²¹ supports the spin assignment. Also the newly assigned ⁵³⁸ nounced upbend. The crossing frequency at which the 522 states at 3814 and 4945 keV fit into the systematics. 539 alignment occurs is mass-dependent and decreases with $_{523}$ Figure 6(b) compares the levels in the favored negative- $_{540}$ increasing mass. A delayed upbend in 123,125 Xe takes 524 526 527 528

529

Figure 5. (Color online) $\gamma\gamma$ angular correlations. The experimental intensities (data points) are compared to calculated angular-correlation functions (lines). (a) Fit of the 417-644keV cascade in 130 Cs, (b) of the 810-642-keV, (c) of the 901-810-keV, and (d) of the 662-901 keV cascade in 131 Xe. See text for details.

parity band in ¹³¹Xe from the present work with those 541 place at a higher frequency compared to the neighboring in the odd-mass nuclei ¹²³⁻¹²⁹Xe [16, 43, 78]. The mid- 542 nuclei. This behavior is explained by the Pauli blocking shell nuclei $^{123-127}$ Xe exhibit excitation spectra which $_{543}$ of the first pair of $h_{11/2}$ neutrons [42, 43]. In 129 Xe a are rotational in character. Towards ¹³¹Xe a characteris- 544 pronounced upbend is found. Huang et al. [16] explained tic transition to a vibrational character is observed. $_{545}$ the upbend by an alignment of two $h_{11/2}$ protons ac-The net. aligned angular momentum $i_x(\omega)$ for the fa- 546 cording to CSM calculations [16]. The negative-parity

	HORUS					AGATA	
E_{γ} (keV)	E_i (keV)	E_f (keV)	I_i^{π}	I_f^{π}	I_{γ}	$E_{\gamma} \; (\text{keV})$	I_{γ}
189.2	1805.4	1616.2	$19/2^{+}$	$19/2^{-}$	29(2)	189	weak
389.2	2194.6	1805.4	$23/2^+$	$19/2^{+}$	30(4)	389	41(4)
634.0	3813.7	3179.7	$27/2^{-}$	$23/2^{-}$	24(4)	634	36(3)
642.0	805.9	163.9	$15/2^{-}$	$11/2^{-}$	$\equiv 100$	642	$\equiv 100$
662.1	3179.7	2517.6	$(31/2^{-})$	$27/2^{-}$	32(3)	662	48(4)
810.3	1616.2	805.9	$19/2^{-}$	$15/2^{-}$	87.7(4)	810	78(7)
901.4	2517.6	1616.2	$23/2^{-}$	$19/2^{-}$	58.6(6)	901	60(3)
991.8	3186.4	2194.6		$23/2^+$	18(3)	992	25(3)
1131.2	4944.9	3813.7	$(35/2^{-})$	$(31/2^{-})$	15(2)	1131	29(2)
_				—	—	230	weak
—	2249.3	1805.4	$21/2^+$	$19/2^{+}$	—	444	25(2)
—				—	—	473	19(2)
—		—		—	—	609	weak
—				—	—	671	15(2)
—				—	—	700	12(2
	1600	805.9	$17/2^{-}$	$15/2^{-}$	—	794	weak
		_				915	12(2)

548 in aligned angular momentum, accompanied by a de- 574 given in Refs. [17, 80, 81]. $_{549}$ crease of rotational frequency. Similar to the -2n part- $_{575}$ The second calculation was carried out employing the 550 ner, the alignment takes place at the newly established 576 computer codes NUSHELLX@MSU [82] and KSHELL [83] $J^{\pi} = 27/2_1^{-1}$ state in ¹³¹Xe. Since the bandhead of the fa-557 in the untruncated *gdsh* model space with the jj55pna ⁵⁵² vored negative-parity band already shows an initial align- ⁵⁷⁸ Hamiltonian (referred to as the SN100PN interacment of $J = 11/2 \hbar$, the observed $h_{11/2}^2$ bandcrossing is 579 tion) [84]. The Hamiltonian consists of four parts, treat-554 blocked, i.e. not the fully aligned 10 h are observed. Fol- 580 ing the neutron-neutron, neutron-proton, proton-proton, ⁵⁵⁵ lowing the strong backbending, a remarkable jump back ⁵⁸¹ and Coulomb repulsion between the protons. The realis-556 to an alignment of 1 \hbar is observed with the 1131-keV 582 tic two-body residual interaction is based on a renormal-557 transition.

558

B. Shell-model calculations

The extended level scheme of 131 Xe is confronted with 559 theoretical predictions from five large-scale shell-model 589 560 561 magic ¹⁰⁰Sn. 562

563 564 565 ⁵⁶⁶ ing+QQ+Multipole for mass region 130). The approach ⁵⁹⁵ tation energies from even-even and even-odd semi-magic $_{567}$ leverages a pairing-plus-quadrupole interaction that con- $_{596}$ nuclei, empirical corrections are added to the original G568 sists of spherical single-particle energies, a monopole- 597 matrix. By using this approach, mainly the monopole ⁵⁶⁹ pairing, a quadrupole-pairing, and a quadrupole- ⁵⁹⁸ part of the interaction is optimized. 570 quadrupole interaction. The Hamiltonian in each neu- 599 Another calculation was conducted in the framework 571 tron and proton space is diagonalized separately and af- 600 of the Realistic shell model (referred to as Realistic

 $_{547}$ band in 131 Xe exhibits a large increase of approx. 7 \hbar $_{573}$ truncated space. More details on the calculation are

ized G matrix derived from the CD-Bonn interaction [85]. ⁵⁸⁴ The neutron-neutron *G*-matrix elements, written in the 585 hole-hole formalism, are multiplied by a factor 0.9 to im-586 prove results for ¹³⁰Sn. The proton and neutron single-⁵⁸⁷ particle energies are based upon the energy levels in ¹³³Sb 588 and 131 Sn.

In addition, a calculation with the effective interaccalculations in the gdsh valence space outside doubly- 500 tion GCN50:82 [86, 87] was performed with the program ⁵⁹¹ KSHELL. Like the SN100PN interaction, the interaction is The first calculation was carried out in the frame- 592 derived from a realistic G matrix based on the CD-Bonn work of the pair-truncated shell model using a phe- 593 potential. However, by fitting different combinations of nomenological interaction, denoted as PQM130 (Pair- 594 two-body matrix elements to sets of experimental exci-

572 terwards the total Hamiltonian is diagonalized in the 601 SM) [88]. Single-particle energies and the two-body effec-

Newly discovered states in ¹³¹Xe are marked with thick lines. the rotational frequency $\hbar\omega$.

 $_{602}$ tive interaction are determined via the V_{low-k} approach 603 from the CD-Bonn free nucleon-nucleon potential [85] with a cutoff momentum of $\Lambda = 2.6 \text{ fm}^{-1}$. The effec-505 tive shell-model Hamiltonian is derived by means of the 663 more compressed than in the spectra of the other inmany-body perturbation theory in the so-called folded- 664 teractions. All five calculations tend to group pairs of diagram expansion or \hat{Q} -box formalism. 607

608 609 610 Monte-Carlo global optimization approach from the G 668 4944.9 keV $(J^{\pi} = 35/2^{-}_{1})$ are tentative. The SN100PN, 611 matrix of the CD-Bonn nucleon-nucleon potential [85] 669 GCN50:82, SN100-KTH, and Realistic SM tend to under-612 by fitting the low-lying states in Sn isotopes. The calcu- 670 estimate the excitation energies of states in the high-spin

613 lation was performed with the program KSHELL. It was 614 shown that the calculations reproduce well the excitation $_{615}$ energies and E2 transition probabilities in even-even Te 616 isotopes [89, 90].

Figure 7 compares the experimentally determined en-617 $_{618}$ ergies of the first excited states (Fig. 7(a)) with the ⁶¹⁹ results of all five shell-model calculations (Fig. 7(b) 620 PQM130, 7(c) SN100PN, 7(d) GCN50:82, 7(e) Realis- $_{621}$ tic SM, and 7(f) SN100-KTH). The states are separated 622 into columns for the (i) negative- and (ii) the positive-623 parity states. The angular momentum of the $J^{\pi} = 3/2^+_1$ ⁶²⁴ ground state is reproduced by the PQM130, GCN50:82, 625 SN100-KTH and Realistic SM interactions, however, the 626 SN100PN interaction reverses the first $J^{\pi} = 3/2^+_1$ and 627 $1/2_1^+$ states. The $J^{\pi} = 11/2_1^-$ state with a neutron-628 hole configuration at 164 keV is best reproduced by 629 the SN100PN, GCN50:82, and SN100-KTH interactions 630 with deviations of only 97, 74 and 27 keV, respectively. 631 The Realistic SM calculation computes the level energy 632 157 keV too low, while the PQM130 calculation is the 633 only one which predicts the state 137 keV too high. ⁶³⁴ The excitation energies of the first excited positive-parity 635 states $J^{\pi} = 5/2^+_1$, $7/2^+_1$, $9/2^+_1$, and $11/2^+_1$ are fairly 636 reproduced by all five calculations. The experimental 637 $J^{\pi} = 13/2^{-}_{1}$ state is 239 keV higher in energy with re-638 spect to the $J^{\pi} = 15/2^{-}_{1}$ state. SN100PN, SN100-KTH 639 and the Realistic SM calculate the energy differences to 640 be 151, 35, and 115 keV, respectively, while PQM130 641 and GCN50:82 reverse the ordering of both states. Also the ordering of the first excited $J^{\pi} = 21/2^+_1$ and $23/2^+_1$ states and of the almost degenerate $J^{\pi} = 19/2^{-}_{1}$ and 644 $17/2_1^-$ states are predicted differently by the five calcu-645 lations. The experimental energy difference between the 646 $J^{\pi} = 21/2^+_1$ and $23/2^+_1$ states is 55 keV. This energy 647 difference is predicted slightly larger by the SN100PN, 648 Realistic SM, and the GCN50:82 interactions with de-649 viations of 231, 225 and 292 keV, respectively, while Figure 6. (Color online) Evolution of excited states in the 650 PQM130 transposes both states. The ordering of the negative-parity band along (a) the odd-mass N = 77 iso- $_{651} J^{\pi} = 19/2^{-}_{1}$ and $17/2^{-}_{1}$ states is predicted correctly by tones from Z = 50 to Z = 64 [72–77] and along (b) the odd- $_{652}$ the PQM130, GCN50:82, and SN100-KTH interactions. mass Z = 54 isotopes from N = 69 to N = 77 [16, 43, 78]. 653 The calculations suggest that the yet unassigned state 654 on top of the positive-parity band at 3186.4 keV can parity bands in odd-mass ¹²³⁻¹³¹Xe isotopes as a function of ⁶⁵⁵ most likely be interpreted as the first $J^{\pi} = 25/2^+_1$ or 656 $27/2_1^+$ state. Figure 8 compares the energy differences 657 between experimental and predicted level energies of the 658 five calculations along the favored negative-parity band of in greater detail. Going to higher spins $(J^{\pi} \geq 23/2^{-}_{1})$, the energy differences in the different calculations amount 661 up to 747 keV for the $J^{\pi} = 31/2^{-}_{1}$ state. The high-662 spin states calculated by the SN100PN interaction are 665 spins $(J^{\pi} = 25/2^{-}_{1}; 27/2^{-}_{1}), (J^{\pi} = 29/2^{-}_{1}; 31/2^{-}_{1})$ and The last calculation, called SN100-KTH, is a $_{666}$ $(J^{\pi} = 33/2^{-}_{1}; 35/2^{-}_{1})$. Therefore, spin assignments of monopole-optimized realistic interaction, derived via the $_{667}$ the newly observed states at 3813.7 $(J^{\pi} = 31/2^{-}_{1})$ and

Figure 7. Comparison of experimental energy spectra with the results of shell-model calculations for ¹³¹Xe. (a) Experimental energy spectrum. The results obtained with the different interactions are separated in different columns: (b) PQM130, (c) SN100PN, (d) GCN50:82, (e) Realistic SM, and (f) SN100-KTH. For clarity, the states are arranged into two columns for the negative- and the positive-parity states.

regime, while the PQM130 interaction tends to slightly 603 state with a half-life of 33(3) ns [93]. So far, no ex-671 overestimate the excitation energies. 672

673 674 sition probabilities were obtained from in the SN100PN 696 ture. Interestingly, the SN100PN interaction computes 675 676 677 679 680 strengths in KSHELL is $10^{-4} e^2 \text{fm}^2$. This value fits into 703 Teruya *et al.* uses effective charges of $e_{\nu} = -1.1$ (due to the evolution of the half-lives of the $J^{\pi} = 19/2_1^+$ states 704 the neutron-hole character) and $e_{\pi} = 1.6$. 683 along the N = 77 isotones. In ¹²⁷Sn the $J^{\pi} = 19/2_1^+$ 705 In order to compare the observed backbending in ¹³¹Xe 684 state has a long half-life of 4.52(15) µs [72], while in ¹³³Ba 706 with the odd-mass isotopic neighbors, shell-model calcuand ¹³⁵Ce the $J^{\pi} = 19/2^+_1$ states have half-lives between 707 lations were performed for negative-parity states above 686 687 so far. 688

Furthermore, the isotones along the N = 77 chain ex-⁷¹¹ the $J^{\pi} = 11/2_1^{-}$ state. 689 hibit several $J^{\pi} = 23/2_1^+$ isomers. In ¹²⁷Sn the experi- ⁷¹² The evolution of the average occupation numbers of mental half-life is 1.19(13) µs [72]. The next odd-mass 713 the proton and neutron single-particle orbits $\pi h_{11/2}$ and so2 isotone along the N = 77 chain, ¹²⁹Te, has a $J^{\pi} = 23/2_1^+$ 714 $\nu h_{11/2}$ in the favored negative-parity band of ¹³¹Xe, cal-

⁶⁹⁴ perimental indication for a long-lived component of the In addition to the excitation energies, reduced tran- $G^{\pi} = 23/2^{-}_{1}$ state in ¹³¹Xe is reported in the literaand PQM130 calculations. Kerek *et al.* [31] determined ⁶⁹⁷ the $B(E2; 23/2_1^+ \rightarrow 19/2_1^+)$ value to be 6.421 W.u. in the half-life of the $J^{\pi} = 19/2_1^+$ state in ¹³¹Xe at 1805 keV ⁶⁹⁸ ¹³¹Xe, corresponding to a lifetime of $\tau \approx 1.4$ ns. Stanto be 14(3) ns. Neglecting M2 contributions, the exper- ∞ dard effective charges, $e_{\pi} = 1.5e$ and $e_{\nu} = 0.5e$, are imental $B(E1; 19/2_1^+ \rightarrow 19/2_1^-)$ value is $4 \times 10^{-6} e^2 \text{fm}^2$, ∞ used in the SN100PN calculation. Furthermore, the which is consistent with the result of the SN100PN inter- 701 PQM130 calculation predicts a $B(E2; 23/2_1^+ \rightarrow 19/2_1^+)$ action, however, the lower numerical limit for transition 702 value of 0.348 W.u., corresponding to a lifetime of ≈ 8 ns.

2 and 5 ns [91] and 8.2(4) ns [92], respectively. In ¹²⁹Te 708 the $J^{\pi} = 11/2_1^-$ state in ¹²⁹Xe. These calculations utino corresponding $J^{\pi} = 19/2^+_1$ state has been discovered 709 lizing the SN100PN interaction are computationally de-710 manding with an *m*-scheme dimension of 2.4×10^9 for

Figure 8. (Color online) Energy differences between experimental and calculated excitation energies with different shellmodel interactions plotted against the spin of the state.

715 culated by the SN100PN and GCN50:82 interactions, 716 are presented in Figs. 9(a)-(d). Similar results from a **717** SN100PN calculation for ¹²⁹Xe are shown in Figs. 9(e)-**718** (f). Backbending and upbending states in ¹²⁹Xe and ¹²⁹Xe and ¹⁷⁴ $J^{\pi} = 23/2_1^-$ state (20.0%; 16.9%). In addition to the al-⁷¹⁹ ¹³¹Xe are highlighted gray. In ¹³¹Xe, both calculations ⁷⁷⁵ ready mentioned $\nu(h_{11/2}^{-3}d_{3/2}^{-2})$ neutron configurations, a 720 predict a continuous decrease of occupation in the neu- 776 competitive occupation of the $\nu(h_{11/2}^{-3}d_{3/2}^{-1}s_{1/2}^{-1})$ neutron r21 tron intruder orbital $\nu h_{11/2}$ until it reaches an occupancy $_{777}$ configuration is observed from the $J^{\pi} = 19/2^{-}_{1}$ state on-722 of $N_{\nu} \approx 9$ in the backbending $J^{\pi} = 27/2^{-}_{1}$ state. The 778 wards. 723 decrease of occupation in the $u h_{11/2}$ orbital is mainly 779 τ_{24} balanced by the increase of occupation in the $\nu d_{5/2}$ and τ_{80} bending occurs at rotational frequencies corresponding $\nu g_{7/2}$ orbitals. For higher-lying states $(J^{\pi} \ge 27/2_1^-)$ the τ_{81} to the $J^{\pi} = 27/2_1^-$ and $31/2_1^-$ states. Going from the **726** $\nu h_{11/2}$ occupation stays constant.

727 728 is predicted to be $N_{\pi} \approx 0.2$ by both calculations for the 784 (d) and (l) of Fig. 10 show once again the emergence of 729 $J^{\pi} = 19/2^{-}_{1}$ and $23/2^{-}_{1}$ states (Figs. 9(b) and 9(d)). Go- 785 a strong $\pi(g^{4}_{7/2})$ proton configuration. Simultaneously, 730 ing to higher spins along the negative-parity band, the 786 the $\pi(g_{7/2}^3 d_{5/2}^1)$ configuration becomes insignificant. The 731 proton $\pi h_{11/2}$ occupancy increases. The occupancy is 787 occupation of two protons in the $g_{7/2}$ and $d_{5/2}$ orbitals r32 maximal for the backbending states $J^{\pi} = 27/2^{-}_{1}$ and r88 (31.9%; 31.5%) is slightly favored over the occupation of 733 $31/2_1^-$ and decreases again after the alignment. This ob- 789 four protons in a pure $g_{7/2}$ configuration (22.6%; 11.1%). 734 servation is also in agreement with the results of the Real-790 It is also noteworthy that SN100PN and GCN50:82 pre- $_{735}$ istic SM calculation were an sharp increase of the $\pi h_{11/2}$ $_{791}$ dict the proton $h_{11/2}$ orbital to contribute pertubatively 736 occupancy from 0.14 at the $J^{\pi} = 23/2^{-}_{1}$ state to 0.34 at 792 to the $J^{\pi} = 27/2^{-}_{1}$ configuration as well, which is consis- $_{737}$ the $J^{\pi} = 27/2_1^-$ state is computed. In ¹²⁹Xe a similar $_{793}$ tent with the results presented in Fig. 9(b) and (d). ⁷³⁸ increase of proton occupancy in the $\pi h_{11/2}$ orbital is pre-⁷⁹⁴ For the configurations of the $J^{\pi} = 31/2^{-}_{1}$ state shown 739 dicted with the emergence of alignment. The occupation 795 in Figs. 10(e) and 10(m), a slight rearrangement of the 740 of this configuration persists in the known upbend states 796 neutron occupancy from the $\nu(\breve{h}_{11/2}^{-3}d_{3/2}^{-2})$ (23.4%; 31.3%) ⁷⁴² ous investigations within the framework of the cranked ⁷⁹⁷ to the $\nu(h_{11/2}^{-3}d_{3/2}^{-1}s_{1/2}^{-1})$ (19.8%; 23.2%) is predicted by r43 shell model where an alignment of two $h_{11/2}$ protons was r98 both interactions. Also the contribution of the proton ⁷⁴⁴ proposed recently [16]. Supported by the observation in ⁷⁹⁹ $h_{11/2}$ orbital persists. 745 746 ture of alignment states. 747

⁷⁴⁹ a detailed decomposition of the states along the fa-⁸⁰⁴ structure is also observed in Figs. 10(f) and 10(n). Con-⁷⁵⁰ vored negative-parity band of ¹³¹Xe into their proton ⁸⁰⁵ figurations with $\pi(g_{7/2}^4)$ become negligibly small, while 748 rs1 and neutron configurations in Figs. 10(a) to 10(f) for sos the $\pi(g_{7/2}^3 d_{5/2}^1)$ configuration, which is negligible small in 752 the SN100PN interaction and in Figs. 10(i) to 10(n) for sor the backbending region, becomes again a leading config-753 the GCN50:82 calculation. All configurations which con- 808 uration. Furthermore, the contribution from the proton

⁷⁵⁴ tribute more than two percent to the overall configuration are shown; the $J^{\pi} = 15/2^{-}_{1}$ state is not visualized for better clarity, nonetheless, the decomposition is very similar 756 to that of the $J^{\pi} = 11/2_1^-$ state. The percentages of the three most probable configurations are written inside the 759 squares whose areas are proportional to their percent-760 ages. The decomposition suggests a highly fragmented structure of ¹³¹Xe.

In both calculations, the main components of the $J^{\pi} =$ 762 763 $11/2_1^-$ state (cf. Fig. 10(a) and 10(i)) involve the coupling 764 of the neutron configuration $\nu(h_{11/2}^{-3}d_{3/2}^{-2})$ to the leading respective proton configurations $\pi(g_{7/2}^4)$ and $\pi(g_{7/2}^2 d_{5/2}^2)$, respec- $_{\textbf{766}}$ tively. The emergence of the two-proton configurations in 767 the $g_{7/2}$ and $d_{5/2}$ orbitals suggests that these two orbitals 768 are energetically close to each other in the proton space. 769 The configuration $\pi(g_{7/2}^2 d_{5/2}^2)$ is the leading proton con-770 figuration for both the $J^{\pi} = 19/2^{-}_{1}$ (24.6% SN100PN; 771 20.5% GCN50:82) and $J^{\pi} = 23/2^{-1}_{1}$ (23.4%; 21.1%) ⁷⁷² states. In addition, the proton configuration $\pi(g_{7/2}^3 d_{5/2}^1)$

As discussed and shown in Fig. 6(c), a distinct back- $_{782} J^{\pi} = 23/2^{-}_{1}$ to the $J^{\pi} = 27/2^{-}_{1}$ state, the decomposi-The proton occupancy of the $\pi h_{11/2}$ orbital in ¹³¹Xe ⁷⁸³ tion matrices of the configurations shown in the panels

¹²⁹Xe, the proton $h_{11/2}$ configuration in ¹³¹Xe has a per- ⁸⁰⁰ Going to higher spins, the configurations become even turbative but decisive role for the description of the struc- ⁸⁰¹ more fragmented into configurations with less than 2%. $_{802}$ As visible in Fig. 6(c), the backbending is completed The role of the $\pi h_{11/2}$ orbital is also scrutinized by ⁸⁰³ at the $J^{\pi} = 35/2^{-1}_{1}$ state. The change in the nuclear

Figure 9. Average neutron (top row) and proton (bottom row) occupation numbers in the proton and neutron $h_{11/2}$ orbitals in ¹³¹Xe, calculated with the (a)-(b) SN100PN and (c)-(d) GCN50:82 interaction. (e)-(f) Similar results for ¹²⁹Xe calculated with the SN100PN interaction.

Figure 10. (Color online) Decomposition of selected states of ¹³¹Xe into their proton and neutron configurations computed by (a_1) - (f_1) the SN100PN and (a_2) - (f_2) the GCN50:82 interaction. The three largest percentages are written inside the squares. Percentages below 2% are not visualized.

BIO at $J^{\pi} = 35/2^{-}$.

⁸⁰⁹ $h_{11/2}$ orbital becomes negligibly small after the alignment ⁸¹¹ Figure 11 shows a similar decomposition of the J^{π} = **812** $23/2_1^-$, $27/2_1^-$, $31/2_1^-$, and $35/2_1^-$ states into their lead-

814 the SN100PN interaction for ¹²⁹Xe. Although neutron 842 mated by the Realistic SM and the SN100PN interacand proton configurations are more fragmented, the pro- add tion, while the GCN50:82 and SN100-KTH interactions ⁸¹⁶ ton configurations before and at the alignment are similar ⁸⁴⁴ predict the alignment frequency in good agreement with s17 to the ones in ¹³¹Xe. Like in ¹³¹Xe, the $\pi(g_{7/2}^3 d_{5/2}^1)$ con- s45 the experiment. The experimentally observed refold to figuration becomes less probable, while the $\pi h_{11/2}$ con- set the original Harris fit value with the 1131-keV transition figuration contribute pertubatively to the $J^{\pi} = 27/2_1^{-347}$ after the alignment is predicted correctly by all calcula-³²⁰ and $31/2_1^-$ state in ¹²⁹Xe. However, deviations occur at ³⁴⁸ tions, particularly by the GCN50:82 calculation. In fact, ³²¹ the $J^{\pi} = 35/2_1^-$ state. Unlike in ¹³¹Xe (cf. Fig. 10(f,n)), ³⁴⁹ all four theoretical calculations provide a fair agreement where a strong $\pi(g_{7/2}^3 d_{5/2}^1)$ character returns to prevail s_{50} of the experimental backbending pattern in 131 Xe. Hows23 after the backbending, the configurations of the J^{π} = $35/2_1^-$ state in ¹²⁹Xe mirror the decompositions observed ⁸⁵² pattern. s25 for the upbend states $J^{\pi} = 27/2_1^-$ and $31/2_1^-$. In particus26 lar the contributions from the $\pi h_{11/2}$ remain unchanged. 827 This behavior confirms the experimentally observed evo-^{\$28} lution from upbending in ¹²⁹Xe to the remarkable back-⁸²⁹ bending in ¹³¹Xe.

Figure 11. Decomposition of selected states of ¹²⁹Xe into their proton and neutron configuration computed by the SN100PN interaction.

To inspect the alignment properties and the impact 830 so of $\pi h_{11/2}$ protons in ¹³¹Xe and ¹²⁹Xe, the results of the shell-model calculations are reparametrized to the total 832 aligned angular momenta I_x as a function of the rota-833 tional frequency $\hbar\omega$. The SN100PN and the GCN50:82 834 interactions are employed in two separate calculations: 835 (i) permitting excitations into the $\pi h_{11/2}$ orbital and (ii) 836 prohibiting more than one proton in the $\pi h_{11/2}$ orbital. 837

838 Figure 12(a) compares the extracted theoretical and ex- 877 so perimental total aligned angular momenta I_x of ¹³¹Xe srs in the vicinity of the backbending region is of special

s13 ing proton and neutron configurations, calculated with s41 quency at which alignment occurs is slightly underesti-851 ever, PQM130 does not to reproduce the backbending

> Figure 12(b) compares the extracted theoretical and 853 854 experimental total aligned angular momenta I_x of ^{131}Xe s55 with the truncation of only one proton in the $\pi h_{11/2}$ ors56 bital. The SN100PN calculation with the $\pi h_{11/2}$ truncas57 tion exhibits only a weak upbend, while the truncated ⁸⁵⁸ GCN50:82 calculation predicts a weakened backbend, both at the position of the $J^{\pi} = 31/2^{-}_{1}$ state. Moreover, ⁸⁶⁰ both calculations do not reproduce the refolding after the alignment at the $J^{\pi} = (35/2^{-}_{1})$ state. Consequently, the small increase in the average proton occupancy of the $\pi h_{11/2}$ orbital has significant effects beyond small per-863 turbations. 864

> The same approach is applied to 129 Xe. Figure 12(c) 865 compares the experimentally determined I_x curve with 866 untruncated and truncated (only one proton allowed in the $\pi h_{11/2}$ orbital) SN100PN calculations. The critical frequency is again slightly underestimated. A satisfac-869 tory reproduction of the experimentally observed upbend ⁸⁷¹ is achieved by the untruncated calculation. The trun-872 cated calculation does not reproduce the upbend pattern 873 for $J^{\pi} \leq 31/2_1^-$ states in the yrast band. The LSSM cal- $_{\rm 874}$ culation supports the previous explanation of a $\pi h_{11/2}^2$ 875 proton alignment from cranked shell-model calculations 876 in Ref. [16].

Table II. Calculated reduced quadrupole transition strengths $B(E2: J_i \rightarrow J_{i-2})$ of the favored negative-parity band in $^{131}\mathrm{Xe}$ employing the SN100PN/GCN50:82 interaction with standard effective charges $e_{\pi} = 1.5e$ and $e_{\nu} = 0.5e$. The first calculation uses the complete gdsh valence space; the second one prohibits more than one proton in the $\pi h_{11/2}$ orbital.

Isotope	Experiment		Theory $B(E2) \downarrow (e^2 \text{fm}^4)$		
	$E_i(\text{keV})$	J_i^{π}	untruncated	truncated	
	806	$15/2_{1}^{-}$	588/530	559/593	
	1616	$19/2_{1}^{-}$	821/767	601/748	
$131 V_{\odot}$	2518	$23/2_{1}^{-}$	932/929	804/883	
ле	3180	$27/2_{1}^{-}$	287/30	782/859	
	3814	$(31/2_1^-)$	574/306	444/44	
	4945	$(35/2_1^-)$	556/346	568/329	

The reduced transition strengths $B(E2; J \rightarrow J - 2)$ sao for calculations without any truncation. The critical fre- s70 interest. It is well known that in the neighborhood of

Figure 12. (Color online) (a) Comparison between experimental and calculated total aligned angular momenta I_x as a function of the rotational frequency $\hbar\omega$, employing the SN100PN, GCN50:82, SN100-KTH, and Realistic SM calculations for ¹³¹Xe. (b) Comparison between experimental and calculated total aligned angular momenta I_x as a function of the rotational frequency $\hbar\omega$, employing the SN100PN and GCN50:82 with a truncation of only one allowed proton in the $\pi h_{11/2}$ orbital. (c) Similar comparison for ¹²⁹Xe employing the SN100PN calculation: (i) untruncated and (ii) truncated with only one proton allowed in the $\pi h_{11/2}$ orbital. Experimental data for 129 Xe are taken from Ref. [16].

sso the band crossing a minimum in the B(E2) values is ss1 caused by the interaction between the bands [94], there-⁸⁸⁵ Tab. II employing the SN100PN and the GCN50:82 in- ⁹¹¹ parity ground state bands in the even-even neighbors reaction with standard effective charges $e_{\pi} = 1.5e$ and $_{912}$ 130 Xe and 132 Xe were investigated and calculations em-

set $e_{\nu} = 0.5e$. The theoretical values are arranged into ⁸⁸⁸ two columns for the untruncated calculation (left) and sso the truncated calculation where only one proton is also lowed in the $\pi h_{11/2}$ orbital (right). The B(E2) values solution slightly increase towards the $27/2^-_1 \rightarrow 23/2^-_1$ transition. ⁸⁹² The SN100PN calculation yields a reduction of the E2transition strength from 932 $e^2 \text{fm}^4$ for the decay of the $J^{\pi} = 23/2_1^-$ state to 287 $e^2 \text{fm}^4$ for the decay at the position of the alignment at $J^{\pi} = 27/2_1^-$. An even more pronounced reduction from 929 $e^2 \text{fm}^4$ to 30 $e^2 \text{fm}^4$ is calculated by the GCN50:82. A similar result is given by 897 see the Realistic SM where the $23/2^-_1 \rightarrow 19/2^-_1$ transition so has $B(E2) = 275 \ e^2 \text{fm}^4$, compared to $B(E2) = 24 \ e^2 \text{fm}^4$ 900 for the $27/2_1^- \rightarrow 23/2_1^-$ transition. Obviously, this re-901 sult cannot be reproduced by the truncated calculations $_{902}$ without pairs in the $\pi h_{11/2}$ orbital. The alignment and 903 the related reduced B(E2) value is observed for the 904 $J^{\pi} = 31/2^{-}_{1}$ state contradicting the experimental find-905 ings. In summary, the reduced transition strengths val-906 ues provide a precise spin dependent confirmation of the significant role of the $\pi h_{11/2}$ orbital.

Figure 13. (Color online) (a) Comparison between experimental and calculated total aligned angular momenta I_x as a function of the rotational frequency $\hbar\omega$, employing the SN100PN calculation for (a) ¹³⁰Xe and (b) ¹³²Xe. The SN100PN interaction is employed in two different calculations: (i) untruncated and (ii) truncated with only one proton allowed in the $\pi h_{11/2}$ orbital. Experimental data taken from Refs. [39, 95].

In order to obtain a consistent picture also the positive-

ploying the SN100PN interaction were carried out. Like $J^{\pi} = 6_1^+$ state. The untruncated calculation predicts the before, the calculations are divided into (i) the full $gdsh grave J^{\pi} = \hat{8}_1^+$ state to be degenerated with the $J^{\pi} = 10_1^+$ 915 valence space and (ii) a truncated calculation where only 973 state consistent with experimental searches. The trunone proton is allowed to occupy the $\pi h_{11/2}$ orbital. A 974 cated calculations predict an energy difference of 204 keV 916 917 comparison between the calculations and the experimen- 975 contradicting the experimental observation. In addition, site tally obtained total aligned angular momentum I_x for site $(16_1^+) \rightarrow (14_1^+) \rightarrow (12_1^+) \rightarrow (10_1^+)$ cascade with a ⁹¹⁹ ¹³⁰Xe is shown in Fig. 13(a). In ¹³⁰Xe, I_x smoothly ⁹⁷⁷ tentatively assigned 1130-keV transition [39] is in good ⁹²⁰ follows the Harris curve up to the $J^{\pi} = 8_1^+$ state at a ⁹⁷⁸ agreement with the results by the untruncated SN100PN ⁹²¹ rotational frequency of approx. $\hbar\omega = 0.38$ MeV. At the ⁹⁷⁹ calculation. In ¹³²Xe the alignment is clearly caused by position of the $J^{\pi} = 10^+_1$ state, I_x exhibits a strong back- 980 protons in the $\pi h_{11/2}$ orbital. ⁹²³ bending down to a frequency of approx. $\hbar\omega = 0.12$ MeV. 924 Similar to ¹³¹Xe, a refolding after the alignment is observed for higher-lying states. Both calculations predict 981 925 an initial alignment at the position of the $J^{\pi} = 6^+_1$ 926 927 state, followed by a strong alignment at the position ⁹²⁷ state, bolowed by a brong angunation f_{12}^{0} and f_{12}^{0} 930 24 keV and 97 keV too low in energy, while the trun-⁹³¹ cated calculation underestimates the energies by 434 keV and 527 keV, respectively. Furthermore, the $J^{\pi} = 10^+_1$ 933 state at $E_x = 2973$ keV is predicted by the calcula-⁹³³ state at $E_x = 2973$ keV is predicted by the calcula-⁹³⁴ tions at excitation energies of 2659 keV (untruncated) ⁹³⁹ negative-parity band closed the gap of unknown highand 2589 keV (truncated). The occupation of the $\pi h_{11/2}$ spin excitations along the isotopic and isotonic chains ⁹³⁵ and 2509 keV (truncated). The occupation of the $J^{\pi} = 0^+_1$ state ⁹³⁶ orbital decreases from $N_{\pi} = 0.273$ at the $J^{\pi} = 0^+_1$ state ⁹³⁷ to $N_{\pi} = 0.099$ at the $J^{\pi} = 6^+_1$ state. Subsequently, the ⁹³⁸ occupancy sharply increases to 0.277 at the $J^{\pi} = 8^+_1$ ⁹³⁹ formed for ¹³¹Xe and its neighbors employing interac-⁹³⁹ state and stays almost constant for states with $J^{\pi} \ge 8^+_1$. ⁹³⁴ tions which are applicable in this mass region. In general, The increase of the occupancy is not compatible with the use the new experimental results, including the pronounced ⁹⁴⁰ The increase of the occupancy is not compared with the calcu-⁹⁴¹ experimentally observed alignment. However, the calcu-⁹⁴² lated B(E2) values along the $12_1^+ \rightarrow 10_1^+ \rightarrow 8_1^+ \rightarrow 6_1^+$ ⁹⁴³ cascade drop sharply from 548 $e^2 \text{fm}^4$ to $12 e^2 \text{fm}^4$ and ⁹⁴⁴ rise back to 1084 $e^2 \text{fm}^4$. Consequently, all experimental ⁹⁴⁵ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁶ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁷ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁸ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁹ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁰ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴¹ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴² i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁴ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁵ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁶ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁷ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁸ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁹ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁰ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴¹ i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴² i.e. GCN50:82 and SN100-KTH, describe the backbend-⁹⁴⁴ i.e. GCN50:82 ods observables are well reproduced corroborating a concur-1000 ing curve and the alignment frequency to its full ex-⁹⁴⁶ rent neutron and proton alignment in ¹³⁰Xe. A compa-¹⁰⁰¹ tent. Comparisons between truncated and untruncated ¹⁰⁰ 122rable result was obtained by a theoretical study of the $_{1002}$ shell-model calculations along the Xe chain in $^{129-132}$ Xe even-mass isotopes $^{114-130}$ Xe employing the microscopic $_{1003}$ clearly indicate that alignment of two $0h_{11/2}$ protons is sub sdIBM-2+2q.p. approach [96]. The alignment along the 1004 decisive for the backbending. Calculations of the repositive-parity band was proposed to be of caused by the 1005 duced transition strengths reproduce exactly the spin $\pi h_{11/2}^2$ proton pair. Rotational alignment of pair of neu- $\nu h_{11/2}^2$ are given by a calculation obtained νh_{1007}^2 scopic origin of the alignment in ¹³¹Xe was traced back ⁹⁵³ with the quadrupole-quadrupole-plus-pairing model [34]. ¹⁰⁰⁸ via the wave-function decomposition and its development These results are in contradiction to the experimental 1009 as a function of angular momentum. The occupation 954 values in 130 Xe. 955

956 for total aligned angular momenta I_x for ¹³²Xe is de-1012 ture. Similar results were obtained in the -2n isotope 957 ⁹⁵⁸ picted in Fig. 13(b). Since no experimental data is avail-¹⁰¹³ ¹²⁹Xe. The new results together with previous achieve- $_{959}$ able for the $J^{\pi} = 8^+$ state, the calculation provides a $_{1014}$ ments demonstrate convincingly the predictive power of 900 prediction for this state. In order to compare theoreti-1015 the modern shell-model calculations with its interaction. $_{961}$ cal calculations with the experimental data, I_x is plot-1016 The interplay between single-particle and collective ex-962 ted for a range from 0 to 100 keV of the expected tran-1017 citation in this transitional region arise unambiguously so sition energy of the yet unobserved $10_1^+ \rightarrow 8_1^+$ decay. 1018 from the specific $h_{11/2}$ intruder orbital. The region is marked gray in Fig. 13(b). Both calcu-1010 In future, measurements of lifetimes and g factors and a first alignment at the $J^{\pi} = 6^+_1$ state 1020 which serve as sensitive probes for nucleon alignment, see followed by a second one at the $J^{\pi} = 10^+_1$ state. Good 1021 should be performed to reaffirm the proposed backbend-907 agreement is obtained with the untruncated calculation 1022 ing mechanism in transitional Xe isotopes. Specifically, see where the $J^{\pi} = 6^+_1$ and 10^+_1 states are slightly under-1023 the discovery of the predicted nearly degenerated $J^{\pi} =$ predicted by 136 and 262 keV, in contrast to the trun-1024 8⁺ state in ¹³²Xe, causing the isomeric $J^{\pi} = 10^+$ state, 970 cated calculation with a discrepancy of 566 keV for the 1025 is of highest interest. Furthermore, fast-timing mea-

v. CONCLUSION

982 In summary, as a main result of three independent 985 citation energy of 4945 keV. A pronounced backbend-986 ing along the negative-parity band on top of the one-987 quasiparticle $\nu h_{11/2}(\alpha = -1/2)$ band around $\hbar \omega =$

lues in ¹³⁰Xe. Approaching the N = 82 shell closure, a comparison 1011 the alignment states in ¹³¹Xe providing a distinct signa-

ACKNOWLEDGMENTS 1029

1030 the professional support during the experiment. We also 1045 L.K. and A.V. thank the Bonn-Cologne Graduate School 1031 would like to thank Prof. Dr. Alfredo Poves for pro-1046 of Physics and Astronomy (BCGS) for financial support. 1032 viding the GCN50:82 interaction. Furthermore, we ex-1047 One of the authors (A. Gadea) has been supported by the 1033 press our thanks to Prof. Dr. Furong Xu and Prof. 1048 Generalitat Valenciana, Spain, under the grant PROM-1034 Dr. Costel Petrache for valuable discussions. The re-1049 ETEOII/2014/019 and EU under the FEDER program. 1035 search leading to these results has received funding from 1036

- 1026 surements are in order to resolve the possible onset of 1037 the German BMBF under contract No. 05P12PKFNE $J^{\pi} = 23/2_1^+$ isomerism in ¹³¹Xe which is also predicted 1038 TP4, from the European Union Seventh Framework Pro-1039 gramme FP7/2007-2013 under Grant Agreement No. 1040 262010 - ENSAR, from the Spanish Ministerio de Cien-1041 cia e Innovación under contract FPA2011-29854-C04, 1042 from the Spanish Ministerio de Economía y Competi-1043 tividad under contract FPA2014-57196-C5, and from the We thank the IKP FN Tandem accelerator team for 1044 U.K. Science and Technology Facilities Council (STFC).
- [1] R. Wyss, A. Granderath, R. Bengtsson, P. von Brentano, 1094 1050 A. Dewald, A. Gelberg, A. Gizon, J. Gizon, S. Harissop-1095 1051 ulos, A. Johnson, W. Lieberz, W. Nazarewicz, J. Nyberg, 1096 1052 and K. Schiffer, "Interplay between proton and neutron 1097 1053 S-bands in the Xe-Ba-Ce-region," Nucl. Phys. A 505, 337 1098 1054 -351(1989).1055 1099
- [2] A. Granderath, P.F. Mantica, R. Bengtsson, R. Wyss, 1100 1056 P. von Brentano, A. Gelberg, and F. Seiffert, "Shapes 1101 1057 and rotational structures of neutron $h_{11/2}$ configurations 1102 1058 in the Xe-Ba-Ce region," Nucl. Phys. A 597, 427 - 471 1103 1059 (1996).1104 1060
- [3] A. Al-Khatib, H. Hübel, P. Bringel, C. Engelhardt, 1105 1061 A. Neußer-Neffgen, G. B. Hagemann, C. R. Hansen, 1106 1062 B. Herskind, G. Sletten, A. Bracco, F. Camera, G. Ben-1107 1063 zoni, P. Fallon, R. M. Clark, M. P. Carpenter, R. V. F. 1108 1064 Janssens, T. L. Khoo, T. Lauritsen, P. Chowdhury, 1109 1065 H. Amro, A. K. Singh, and R. Bengtsson, "Transition to 1110 1066 non-collective states at high spin in ¹²⁴Xe ," Eur. Phys. 1111 1067 J 36, 21-29 (2008). 1112 1068
- A. Al-Khatib, A. K. Singh, H. Hübel, P. Bringel, 1113 [4]1069 A. Bürger, J. Domscheit, A. Neußer-Neffgen, G. Schön-1114 1070 waßer, G. B. Hagemann, C. Ronn Hansen, B. Herskind, 1115 1071 G. Sletten, J. N. Wilson, J. Timár, A. Algora, Zs. Dom-1116 1072 brádi, J. Gál, G. Kalinka, J. Molnár, B. M. Nyakó, 1117 1073 D. Sohler, L. Zolnai, R. M. Clark, M. Cromaz, P. Fal-1118 1074 lon, I. Y. Lee, A. O. Macchiavelli, D. Ward, H. Amro, 1119 1075 W. C. Ma, M. Kmiecik, A. Maj, J. Styczen, K. Zuber, 1120 [13] K. Nomura, T. Nikšić, and D. Vretenar, "Shape-phase 1076 K. Hauschild, A. Korichi, A. Lopez-Martens, J. Roc-1121 1077 caz, S. Siem, F. Hannachi, J. N. Scheurer, P. Bednar-1122 1078
- czyk, Th. Byrski, D. Curien, O. Dorvaux, G. Duchêne, 1123 [14] L. M. Robledo, R. R. Rodríguez-Guzmán, and P. Sar-1079 B. Gall, F. Khalfallah, I. Piqueras, J. Robin, A. Gör-1124 1080
- gen, K. Juhász, S. B. Patel, A. O. Evans, G. Rainovski, 1125 1081 G. Benzoni, A. Bracco, F. Camera, S. Leoni, P. Mason, 1126 1082
- 1083 trache, D. Petrache, G. La Rana, R. Moro, G. De Ange-1128 1084
- lis, J. C. Lisle, B. Cederwall, K. Lagergren, R. M. Lieder, 1129 1085 E. Podsvirova, W. Gast, H. Jäger, and N. Redon, "Com-1130 [16] 1086 petition between collective and noncollective excitation 1131 1087 modes at high spin in ¹²⁴Ba," Phys. Rev. C 74, 014305 1132 1088 (2006).
- 1133 1089 A. K. Singh, H. Hübel, J. Domscheit, G. B. Hagemann, 1134 1090 15 B. Herskind, D. R. Jensen, J. N. Wilson, R. Clark, 1135 1091 M. Cromaz, P. Fallon, A. Görgen, I. Y. Lee, A. O. Mac-1136 [17] 1092 chiavelli, D. Ward, H. Amro, W. C. Ma, J. Timár, and 1137 1093

I. Ragnarsson, "Evidence for noncollective oblate structures at high spin in ¹²³Cs," Phys. Rev. C 70, 034315 (2004).

- H. Morinaga and N. L. Lark, "Collective excited states in [6]even xenon isotopes," Nucl. Phys. 67, 315 – 320 (1965).
- I. Ragnarsson, A. Sobiczewski, R. K. Sheline, S. E. Lars-|7|son, and B. Nerlo-Pomorska, "Comparison of potentialenergy surfaces and moments of inertia with experimental spectroscopic trends for non-spherical Z = 50-82 nuclei," Nucl. Phys. A 233, 329 - 356 (1974).
- R. Wyss, J. Nyberg, A. Johnson, R. Bengtsson, and [8] W. Nazarewicz, "Highly deformed intruder bands in the $A \approx 130$ mass region," Phys. Lett. B **215**, 211 - 217 (1988).
- [9] R. F. Casten and P. von Brentano, "An extensive region of O(6)-like nuclei near A = 130," Phys. Lett. B 152, 22 -28 (1985).
- [10] Y. S. Chen, S. Frauendorf, and G. A. Leander, "Shape of rotating quasiparticle orbits and signature splitting in La, Ce, and Pr nuclei," Phys. Rev. C 28, 2437–2445 (1983).
- R. O. Sayer, J. S. Smith, and W. T. Milner, "Rotational and quasirotational bands in even-even nuclei," At. Data Nucl. Data Tables 15, 85 – 110 (1975).
- [12]N. Yoshida, A. Arima, and T. Otsuka, "Description of high-spin states in the interacting boson model," Phys. Lett. B **114**, 86 – 90 (1982).
- transitions in odd-mass γ -soft nuclei with mass $A \approx 130,$ " Phys. Rev. C 96, 014304 (2017).
- riguren, "Evolution of nuclear shapes in medium mass isotopes from a microscopic perspective," Phys. Rev. C **78**, 034314 (2008).
- B. Million, A. Paleni, R. Sacchi, O. Wieland, C. M. Pe-1127 [15] C.-B. Moon, C. S. Lee, T. Komatsubara, Y. Sasaki, and K. Furuno, "Structure of the negative parity bands in ¹²⁵Xe," Phys. Rev. C **76**, 067301 (2007).
 - Y. Huang, Z. G. Xiao, S. J. Zhu, C. Qi, Q. Xu, W. J. Cheng, H. J. Li, L. M. Lyu, R. S. Wang, W. H. Yan, H. Yi, Y. Zhang, Q. M. Chen, C. Y. He, S. P. Hu, C. B. Li, H. W. Li, P. W. Luo, X. G. Wu, Y. H. Wu, Y. Zheng, and J. Zhong, "High-spin structures in the ¹²⁹Xe nucleus," Phys. Rev. C 93, 064315 (2016).
 - K. Higashiyama, N. Yoshinaga, and K. Tanabe, "Shell model study of backbending phenomena in Xe isotopes,"

- Phys. Rev. C 65, 054317 (2002). 1138
- [18] Y. Lei and Z. Y. Xu, " $(h_{11/2})^2$ alignments in neutron-1202 1139 rich ¹³²Ba with negative-parity pairs," Phys. Rev. C 92, 1203 1140 014317 (2015). 1204 1141

1201

- [19] T. Takahashi, N. Yoshinaga, and K. Higashiyama, 1205 "Backbending phenomena in $^{132,134,136}\mathrm{Ce}$ with a pair- 1206 1142 1143 truncated shell model," Phys. Rev. C 71, 014305 (2005). 1207 1144
- [20] H. Daniel, O. Mehling, P. Schmidlin, D. Schotte, and 1208 1145
- E. Thummernicht, "Zerfallsschemata, β -Matrixelemente 1209 1146 und γ -Multipolordnungen für die Übergänge ⁵⁶Co \rightarrow ⁵⁶¹²¹⁰ 1147 Fe und ${}^{131}J \rightarrow {}^{131}Xe$, "Z. Phys **179**, 62–75 (1964). 1211 [39] 1148
- [21] R. A. Meyer, F. Momyer, and W. B. Walters, "Decay of 1212 8.0-day ¹³¹I to levels of ¹³¹Xe and 11.77-day ^{131m}Xe," Z. 1213 1149 1150 Phys. 268, 387–390 (1974). 1214 1151
- Chr. Bargholtz, S. Beshai, and L. Gidefeldt, "Angular 1215 [22]1152 correlation measurements in ¹³¹Xe," Nucl. Phys. A 270, 1216 1153 189 - 199 (1976). 1217 1154
- M.-C. Lépy, L. Brondeau, Ch. Bobin, V. Lourenço, 1218 [23]1155 C. Thiam, and M.-M. Bé, "Determination of X- and 1219 1156 gamma-ray emission intensities in the decay of ¹³¹I," 1220 1157 Appl. Radiat. Isot. **109**, 154 – 159 (2016). 1221 1158
- M. Berman and G. B. Beard, "Nuclear Resonance Fluo-1222 [24]1159 rescence in ¹³¹Xe," Phys. Rev. C 2, 1506–1513 (1970). 1223
- 1160 H. Langhoff, "Lifetime measurements in ¹³¹Xe and ¹²²⁴ [25]1161 ¹²⁹Xe," Nucl. Phys. A **158**, 657 – 663 (1970). 1225
- 1162 [26] D. C. Hoffman, J. W. Barnes, B. J. Dropesky, F. O. 1226 1163 Lawrence, G. M. Kelley, and M. A. Ott, "Half-lives of 1227 129m Xe, 131m Xe, 133m Xe, 133g Xe and 135g Xe," J. Inorg. 1228 1164 1165 Nucl. Chem. 37, 2336 (1975). 1229 1166
- D. C. Palmer, A. D. Irving, P. D. Forsyth, I. Hall, 1230 [27]1167 D. G. E. Martin, and M. J. Maynard, "Low-lying levels 1231 1168 of ¹²⁹Xe and ¹³¹Xe," J. Phys. G 4, 1143 (1978). 1232 1169
- Yu. Khazov, I. Mitropolsky, and A. Rodionov, "Nuclear 1233 [40] [28]1170 Data Sheets for A = 131," Nucl. Data Sheets 107, 2715 1234 1171 - 2930 (2006). 1235 1172
- [29] A. D. Irving, P. D. Forsyth, I. Hall, and D. G. E. Martin, 1236 1173 "The properties of low-lying levels of ¹²⁹Xe and ¹³¹Xe," 1237 [41] I. Rezanka, A. Kerek, A. Luukko, and C. J. Herrlander, 1174 J. Phys. G 5, 1595 (1979). 1238 1175
- [30] T. Lönnroth, J. Kumpulainen, and C. Tuokko, "One-1239 and Three-Quasiparticle States in ^{127,129,131,133}Xe and 1240 [42] 1176 1177
- Their Coexistence With Band Structures," Phys. Scripta 1241 1178 **27**, 228 (1983). 1242 1179
- [31] A. Kerek, A. Luukko, M. Grecescu, and J. Sztarkier, 1243 1180 "Two- and three-quasiparticle states in ¹³²Xe and ¹³¹Xe," 1244 [43] 1181 Nucl. Phys. A **172**, 603 – 617 (1971). 1245 1182
- [32] "Evaluated Nuclear Structure Data File (ENSDF)," 1246 1183 (2017), http://www.nndc.bnl.gov/ensdf/. 1184 1247
- J. F. Smith, C. J. Chiara, D. B. Fossan, D. R. LaFosse, 1248 [33] 1185 G. J. Lane, J. M. Sears, K. Starosta, M. Devlin, 1249 [44] 1186
- F. Lerma, D. G. Sarantites, S. J. Freeman, M. J. Leddy, 1250 1187
- J. L. Durell, A. J. Boston, E. S. Paul, A. T. Semple, I. Y. 1251 1188 Lee, A. O. Macchiavelli, and P. H. Heenen, "Excited 1252 1189 states and deformation of ¹¹²Xe," Phys. Lett. B 523, 131253 1190
- 21 (2001). 1254 1191 [34] S. P. Sarswat, Arun Bharti, and S. K. Khosa, "Backbend-1255 1192
- ing and breaking of axial symmetry in the yrast bands of 1256 1193 ⁻¹³⁰Xe isotopes," Phys. Rev. C 58, 2041–2048 (1998). 1257 1194
- [35] H. Kusakari, K. Kitao, K. Sato, M. Sugawara, and 1258 1195 H. Katsuragawa, "High-spin states in even-mass Xe nu- 1259 1196
- clei and backbending phenomena," Nucl. Phys. A 401, 1260 1197 445 - 459 (1983). 1261 1198
- C. S. Purry, P.M. Walker, G. D. Dracoulis, T. Kibedi, 1262 [36] 1199 F. G. Kondev, S. Bayer, A. M. Bruce, A. P. Byrne, 1263 1200 1264

W. Gelletly, P. H. Regan, C. Thwaites, O. Burglin, and N. Rowley, "Multi-quasiparticle isomers and rotational bands in 178 W," Nuc. Phys. A **632**, 229 – 274 (1998).

- [37] H. F. Brinckmann, C. Heiser, and W. D. Fromm, "Ein Hochangeregter isomerer Kernzustand in ¹³²Xe," Nucl. Phys. A 96, 318 - 326 (1967).
- M. v. Hartrott, J. Hadijuana, K. Nishiyama, D. Quit-[38] mann, D. Riegel, and H. Schweickert, "Nuclear spin relaxation of Xe in liquid Te," Z. Phys. A 278, 303-308 (1976).
 - A. Vogt, M. Siciliano, B. Birkenbach, P. Reiter, K. Hadyńska-Klęk, C. Wheldon, J. J. Valiente-Dobón, E. Teruya, N. Yoshinaga, K. Arnswald, D. Bazzacco, A. Blazhev, A. Bracco, B. Bruyneel, R. S. Chakrawarthy, R. Chapman, D. Cline, L. Corradi, F. C. L. Crespi, M. Cromaz, G. de Angelis, J. Eberth, P. Fallon, E. Farnea, E. Fioretto, C. Fransen, S. J. Freeman, B. Fu, A. Gadea, W. Gelletly, A. Giaz, A. Görgen, A. Gottardo, A. B. Hayes, H. Hess, R. Hetzenegger, R. Hirsch, H. Hua, P. R. John, J. Jolie, A. Jungclaus, V. Karayonchev, L. Kaya, W. Korten, I. Y. Lee, S. Leoni, X. Liang, S. Lunardi, A. O. Macchiavelli, R. Menegazzo, D. Mengoni, C. Michelagnoli, T. Mijatović, G. Montagnoli, D. Montanari, C. Müller-Gatermann, D. Napoli, C. J. Pearson, Zs. Podolyák, G. Pollarolo, A. Pullia, M. Queiser, F. Recchia, P. H. Regan, J.-M. Régis, N. Saed-Samii, E. Sahin, F. Scarlassara, M. Seidlitz, B. Siebeck, G. Sletten, J. F. Smith, P.-A. Söderström, A. M. Stefanini, O. Stezowski, S. Szilner, B. Szpak, R. Teng, C. Ur, D. D. Warner, K. Wolf, C. Y. Wu, and K. O. Zell, "High-spin structures in 132 Xe and 133 Xe and evidence for isomers along the N = 79 isotones," Phys. Rev. C **96**, 024321 (2017).
- H. Helppi, J. Hattula, A. Luukko, M. Jääskeläinen, and F. Dönau, "In-beam study of ^{127,129}Xe and collective description of the level structures in odd-A Xe nuclei." Nucl. Phys. A 357, 333 – 355 (1981).
- "High-spin states in odd Xe nuclei," Nucl. Phys. A 141, 130 - 144 (1970).
- A. Granderath, D. Lieberz, A. Gelberg, S. Freund, W. Lieberz, R. Wirowski, P. von Brentano, and R. Wyss, "Excited states in ¹²⁵Xe," Nucl. Phys. A **524**, 153 – 178 (1991).
- I. Wiedenhöver, U. Neuneyer, C. Kerskens, J. Altmann, O. Stuch, J. Theuerkauf, G. Siems, R. Wirowski, M. Eschenauer, P. von Brentano, R. Schubart, H. Kluge, and K. H. Maier, "High spin structure in ¹²⁷Xe and ¹²⁵Xe," Z. Phys. **347**, 71–72 (1993).
- A. Al-Khatib, G. B. Hagemann, G. Sletten, A. K. Singh, H. Amro, G. Benzoni, A. Bracco, P. Bringel, F. Camera, M. P. Carpenter, P. Chowdhury, R. M. Clark, C. Engelhardt, P. Fallon, B. Herskind, H. Hübel, R. V. F. Janssens, T. L. Khoo, T. Lauritsen, A. Neußer-Neffgen, and C. Rønn Hansen, "High-spin spectroscopy in ¹²⁵Xe," Phys. Rev. C 83, 024306 (2011).
- S. Chakraborty, H. P. Sharma, S. S. Tiwary, C. Ma-[45]jumder, P. K. Prajapati, S. Rai, P. Popli, M. Singh, S. S. Bhattacharjee, R. P. Singh, S. Muralithar, P. Banerjee, S. Ganguly, S. Kumar, A. Kumar, and R. Palit, "Two-Neutron Alignment in ¹²⁷Xe," Braz. J Phys. 47, 406-410 (2017).
- [46]S. Akkoyun et al., "AGATA - Advanced GAmma Tracking Array," Nucl. Instrum. Meth. Phys. Res. A 668, 26 (2012).

- [47] A. M. Stefanini, L. Corradi, G. Maron, A. Pisent, 1329 1265
- M. Trotta, A. M. Vinodkumar, S. Beghini, G. Montag-1330 1266 noli, F. Scarlassara, G. F. Segato, A. De Rosa, G. In-1331 1267
- glima, D. Pierroutsakou, M. Romoli, M. Sandoli, G. Pol-1332 1268 larolo, and A. Latina, "The heavy-ion magnetic spec-1333 1269 trometer PRISMA," Nucl. Phys. A 701, 217 - 221 (2002). 1334 1270
- S. Szilner, C. A. Ur, L. Corradi, N. Marginean, G. Pol-1335 [58] 48 1271
- larolo, A. M. Stefanini, S. Beghini, B. R. Behera, 1336 1272
- E. Fioretto, A. Gadea, B. Guiot, A. Latina, P. Mason, 1337 1273 G. Montagnoli, F. Scarlassara, M. Trotta, G. de Angelis, 1338 1274
- F. Della Vedova, E. Farnea, F. Haas, S. Lenzi, S. Lunardi, 1339 1275
- R. Marginean, R. Menegazzo, D. R. Napoli, M. Nespolo, 1340 1276
- I. V. Pokrovsky, F. Recchia, M. Romoli, M.-D. Salsac, 1341 1277
- N. Soić, and J. J. Valiente-Dobón, "Multinucleon trans-1342 1278 fer reactions in closed-shell nuclei," Phys. Rev. C 76, 1343 [61] 1279 024604 (2007).
- 1280 1344 L. Corradi, S. Szilner, G. Pollarolo, D. Montanari, 1345 [49]1281
- E. Fioretto, A.M. Stefanini, J. J. Valiente-Dobón, 1346 1282 E. Farnea, C. Michelagnoli, G. Montagnoli, F. Scarlas-1347 1283 sara, C.A. Ur, T. Mijatović, D. Jelavić Malenica, N. Soić, 1348 1284 and F. Haas, "Multinucleon transfer reactions: Present 1349 1285 status and perspectives," Nucl. Instrum. Meth. Phys. ${}_{\tt 1350}$ 1286
- Res. B 317, Part B, 743 751 (2013). 1287 1351
- L. Netterdon, V. Derya, J. Endres, C. Fransen, A. Hen-1352 [50]1288 nig, J. Mayer, C. Müller-Gatermann, A. Sauerwein, 1353 1289 P. Scholz, M. Spieker, and A. Zilges, "The γ -ray spec-1354 1290 trometer HORUS and its applications for nuclear astro-1355 1291 physics," Nucl. Instrum. Meth. Phys. Res. A 754, 94 -1356 1292 100 (2014). 1293 1357
- L. Kaya, A. Vogt, P. Reiter, B. Birkenbach, R. Hirsch, 1358 [65] [51]1294 K. Arnswald, H. Hess, M. Seidlitz, T. Steinbach, N. Warr, 1359 1295 K. Wolf, C. Stahl, N. Pietralla, T. Limböck, K. Meer-1360 1296 holz, and R. Lutter, "Characterization and calibration of 1361 1297 radiation-damaged double-sided silicon strip detectors," 1362 1298 Nucl. Instrum. Meth. Phys. Res. A 855, 109 – 117 (2017). 1363 [66] 1299
- A. Gadea, E. Farnea, J. J. Valiente-Dobón, B. Million, 1364 [52]1300 D. Mengoni, D. Bazzacco, F. Recchia, A. Dewald, Th. 1365 1301 Pissulla, W. Rother, G. de Angelis, et al., "Conceptual 1366 [67] 1302 design and infrastructure for the installation of the first 1367 1303 AGATA sub-array at LNL," Nucl. Instrum. Meth. Phys. 1368 1304 Res. A 654, 88 – 96 (2011). 1369 1305
- A. Wiens, H. Hess, B. Birkenbach, B. Bruyneel, 1370 [53]1306 J. Eberth, D. Lersch, G. Pascovici, P. Reiter, and H.-1371 [68] 1307 G. Thomas, "The AGATA triple cluster detector," Nucl. 1372 1308 Instrum. Meth. Phys. Res. A 618, 223 – 233 (2010). 1373 1309
- R.S. Kempley et al., "Cross Coincidences in the ¹³⁶Xe₁₃₇₄ 1310 54
- + ²⁰⁸Pb deep-inelastic reaction," Acta. Phys. Pol. B 42, 1375 1311 717-720 (2011). 1312 1376
- M. Siciliano et al., "Neutron-rich nuclei in the vicinity of 1377 [55]1313 ²⁰⁸Pb," LNL Annual Report 2014 **241**, 63–64 (2015). 1314 1378
- A. Vogt, B. Birkenbach, P. Reiter, L. Corradi, T. Mija-1379 [56]1315 tović, D. Montanari, S. Szilner, D. Bazzacco, M. Bowry, 1380 1316 A. Bracco, B. Bruyneel, F. C. L. Crespi, G. de Ange-1381 1317 lis, P. Désesquelles, J. Eberth, E. Farnea, E. Fioretto, 1382 1318 A. Gadea, K. Geibel, A. Gengelbach, A. Giaz, A. Gör-1383 1319 gen, A. Gottardo, J. Grebosz, H. Hess, P. R. John, 1384 1320 J. Jolie, D. S. Judson, A. Jungclaus, W. Korten, S. Leoni, 1385 1321 S. Lunardi, R. Menegazzo, D. Mengoni, C. Michelagnoli, 1386 1322 G. Montagnoli, D. Napoli, L. Pellegri, G. Pollarolo, 1387 1323 A. Pullia, B. Quintana, F. Radeck, F. Recchia, D. Rosso, 1388 1324 E. Şahin, M. D. Salsac, F. Scarlassara, P.-A. Söderström, 1389 1325 A. M. Stefanini, T. Steinbach, O. Stezowski, B. Szpak, 1390 1326 Ch. Theisen, C. Ur, J. J. Valiente-Dobón, V. Vandone, 1391 1327 and A. Wiens, "Light and heavy transfer products in

1328

¹³⁶Xe+²³⁸U multinucleon transfer reactions," Phys. Rev. C 92, 024619 (2015).

- [57]B. Bruyneel, B. Birkenbach, and P. Reiter, "Pulse shape analysis and position determination in segmented HPGe detectors: The AGATA detector library," Eur. Phys. J. A 52, 70 (2016).
- A. Lopez-Martens, K. Hauschild, A. Korichi, J. Roccaz, and J-P. Thibaud, " γ -ray tracking algorithms: a comparison," Nucl. Instrum. Meth. Phys. Res. A 533, 454 - 466 (2004).
- tesa SE, "tesa
 $^{(\!\mathbb{R}\!)}$ adhesive 68556 data sheet," . [59]
- N. Saed-Samii, Lifetime measurements using the FA-[60]TIMA array in combination with EXOGAM@ILL, Diplomarbeit, Universität zu Köln (2013), unpublished.
- J. Theuerkauf, Ph.D. thesis, Universität zu Köln (1994).
- [62]I. Wiedenhöver, "Computer code CORLEONE," (1997).unpublished.
- [63] I. Wiedenhöver, O. Vogel, H. Klein, A. Dewald, P. von Brentano, J. Gableske, R. Krücken, N. Nicolay, A. Gelberg, P. Petkov, A. Gizon, J. Gizon, D. Bazzacco, C. Rossi Alvarez, G. de Angelis, S. Lunardi, P. Pavan, D. R. Napoli, S. Frauendorf, F. Dönau, R. V. F. Janssens, and M. P. Carpenter, "Detailed angular correlation analysis with 4π spectrometers: Spin determinations and multipolarity mixing measurements in ¹²⁸Ba," Phys. Rev. C 58, 721–728 (1998).
- K. S. Krane and R. M. Steffen, "Determination of the [64]E2/M1 Multipole Mixing Ratios of the Gamma Transitions in ¹¹⁰Cd," Phys. Rev. C 2, 724–734 (1970).
- K.S. Krane, R.M. Steffen, and R.M. Wheeler, "Directional correlations of gamma radiations emitted from nuclear states oriented by nuclear reactions or cryogenic methods," At. Data Nucl. Data Tables 11, 351 - 406 (1973).
- A. Linnemann, Das HORUS-Würfelspektrometer und Multiphononanregungen in ¹⁰⁶Cd, Ph.D. thesis, Universität zu Köln (2006).
- L. Bettermann, C. Fransen, S. Heinze, J. Jolie, A. Linnemann, D. Mücher, W. Rother, T. Ahn, A. Costin, N. Pietralla, and Y. Luo, "Candidates for the onephonon mixed-symmetry state in ¹³⁰Xe," Phys. Rev. C **79**, 034315 (2009).
- S. Mukhopadhyay, D.C. Biswas, S.K. Tandel, L.S. Danu, B.N. Joshi, G.K. Prajapati, Somnath Nag, T. Trivedi, S. Saha, J. Sethi, R. Palit, and P.K. Joshi, "Coexisting shape- and high-K isomers in the shape transitional nucleus ¹⁸⁸Pt," Phys. Lett. B **739**, 462 – 467 (2014).
- [69] A. Vogt, B. Birkenbach, P. Reiter, A. Blazhev, M. Siciliano, J. J. Valiente-Dobón, C. Wheldon, D. Bazzacco, M. Bowry, A. Bracco, B. Bruyneel, R. S. Chakrawarthy, R. Chapman, D. Cline, L. Corradi, F. C. L. Crespi, M. Cromaz, G. de Angelis, J. Eberth, P. Fallon, E. Farnea, E. Fioretto, S. J. Freeman, A. Gadea, K. Geibel, W. Gelletly, A. Gengelbach, A. Giaz, A. Görgen, A. Gottardo, A. B. Hayes, H. Hess, H. Hua, P. R. John, J. Jolie, A. Jungclaus, W. Korten, I. Y. Lee, S. Leoni, X. Liang, S. Lunardi, A. O. Macchiavelli, R. Menegazzo, D. Mengoni, C. Michelagnoli, T. Mijatović, G. Montagnoli, D. Montanari, D. Napoli, C. J. Pearson, L. Pellegri, Zs. Podolyák, G. Pollarolo, A. Pullia, F. Radeck, F. Recchia, P. H. Regan, E. Sahin, F. Scarlassara, G. Sletten, J. F. Smith, P.-A. Söderström, A. M. Stefanini, T. Steinbach, O. Stezowski, S. Szilner,

B. Szpak, R. Teng, C. Ur, V. Vandone, D. Ward, D. D. 1456 1392 Warner, A. Wiens, and C. Y. Wu, "High-spin structure 1457 1393 of ¹³⁴Xe," Phys. Rev. C **93**, 054325 (2016). 1394 1458

- A. Vogt, B. Birkenbach, P. Reiter, A. Blazhev, M. Sicil-1459 [76] 1395 1701
- iano, K. Hadvńska-Klek, J. J. Valiente-Dobón, C. Whel- 1460 1396 don, E. Teruya, N. Yoshinaga, K. Arnswald, D. Bazzacco, 1461 1397
- M. Bowry, A. Bracco, B. Bruyneel, R. S. Chakrawarthy, 1462 1398
- R. Chapman, D. Cline, L. Corradi, F. C. L Crespi, 1463 1399
- M. Cromaz, G. de Angelis, J. Eberth, P. Fallon, 1464 1400
- E. Farnea, E. Fioretto, S. J. Freeman, B. Fu, A. Gadea, 1465 1401
- K. Geibel, W. Gelletly, A. Gengelbach, A. Giaz, A. Gör-1466 1402
- gen, A. Gottardo, A. B. Hayes, H. Hess, R. Hirsch, 1467 1403
- H. Hua, P. R. John, J. Jolie, A. Jungclaus, L. Kaya, 1468 1404 W. Korten, I. Y. Lee, S. Leoni, L. Lewandowski, X. Liang, 1469 1405
- S. Lunardi, A. O. Macchiavelli, R. Menegazzo, D. Men-1470 1406
- goni, C. Michelagnoli, T. Mijatović, G. Montagnoli, 1471 [78] 1407
- D. Montanari, C. Müller-Gatermann, D. Napoli, C. J. 1472 1408
- Pearson, L. Pellegri, Zs. Podolyák, G. Pollarolo, A. Pul-1473 1409
- lia, M. Queiser, F. Radeck, F. Recchia, P. H. Regan, 1474 1410
- D. Rosiak, N. Saed-Samii, E. Sahin, F. Scarlassara, 1475 1411
- D. Schneiders, M. Seidlitz, B. Siebeck, G. Sletten, J. F. 1476 1412
- Smith, P.-A. Söderström, A. M. Stefanini, T. Steinbach, 1477 1413 O. Stezowski, S. Szilner, B. Szpak, R. Teng, C. Ur, 1478 [80]
- 1414 V. Vandone, D. D. Warner, A. Wiens, C. Y. Wu, and 1479 1415
- K. O. Zell, "Isomers and high-spin structures in the 1480 1416 1417
- 024316 (2017). 1418 1482 T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, and 1483 |71|1419
- D. R. LaFosse, "Systematic search of $\pi h_{11/2} \otimes \nu h_{11/2}$ chi-1484 [82] 1420 ral doublet bands and role of triaxiality in odd-odd z=55 1485 1421 ^{128,130,132,134}Cs," Phys. Rev. C 67, 044319₁₄₈₆ isotopes: 1422 (2003).1423
- [72]R. L. Lozeva, G. S. Simpson, H. Grawe, G. Nevens, L. A. 1488 1424 Atanasova, D. L. Balabanski, D. Bazzacco, F. Becker, 1489 1425 P. Bednarczyk, G. Benzoni, N. Blasi, A. Blazhev, 1490 [84] 1426 A. Bracco, C. Brandau, L. Cáceres, F. Camera, S. K. 1491 1427 Chamoli, F. C. L. Crespi, J.-M. Daugas, P. De-1492 1428 tistov, M. De Rydt, P. Doornenbal, C. Fahlander, 1493 [85] 1429 E. Farnea, G. Georgiev, J. Gerl, K. A. Gladnishki, 1494 1430 M. Górska, J. Grębosz, M. Hass, R. Hoischen, G. Ilie, 1495 1431 M. Ionescu-Bujor, A. Iordachescu, J. Jolie, A. Jung-1496 1432 claus, M. Kmiecik, I. Kojouharov, N. Kurz, S. P. Lak-1497 1433 shmi, G. Lo Bianco, S. Mallion, A. Maj, D. Monta-1498 1434 nari, O. Perru, M. Pfützner, S. Pietri, J. A. Pinston, 1499 1435
- Zs. Podolyák, W. Prokopowicz, D. Rudolph, G. Rusev, 1500 1436
- T. R. Saitoh, A. Saltarelli, H. Schaffner, R. Schwengner, 1501 1437
- S. Tashenov, K. Turzó, J. J. Valiente-Dobón, N. Ver-1502 [88] 1438
- meulen, J. Walker, E. Werner-Malento, O. Wieland, and 1503 1439
- H.-J. Wollersheim, "New sub- μ s isomers in $^{125,127,129}Sn_{1504}$ 1440 and isomer systematics of ¹²⁴⁻¹³⁰Sn," Phys. Rev. C 77, 1505 1441 064313 (2008). 1442 1506
- A. Astier, M. G. Porquet, Ts. Venkova, Ch. Theisen, 1507 [73]1443 G. Duchêne, F. Azaiez, G. Barreau, D. Curien, I. De-1508 1444 loncle, O. Dorvaux, B. J. P. Gall, M. Houry, R. Lu-1509 1445 cas, N. Redon, M. Rousseau, and O. Stézowski, "High-1510 1446 spin structures of ^{124–131}Te: Competition of proton- and ¹⁵¹¹ 1447
- neutron-pair breakings," Eur. Phys. J. 50, 1-24 (2014). 1512 1448
- [74]S. Juutinen, P. Šimeček, P. Ahonen, M. Carpenter, 1513 1449
- C. Fahlander, J. Gascon, R. Julin, A. Lampinen, T. Lön-1514 1450 nroth, J. Nyberg, A. Pakkanen, M. Piiparinen, K. Schif-1515 1451
- fer, G. Sletten, S. Törmänen, and A. Virtanen, "Shape 1516 coexistence in the transitional ¹³³Ba nucleus," Phys. Rev. 1517 1452
- 1453 C 51, 1699–1707 (1995). 1518 1454
- 1455 [75] R. Ma, E. S. Paul, D. B. Fossan, Y. Liang, N. Xu, 1519

R. Wadsworth, I. Jenkins, and P. J. Nolan, "Rotational bands in ¹³⁵Ce: Collective prolate and oblate rotation," Phys. Rev. C 41, 2624–2634 (1990).

- C. M. Petrache, R. Venturelli, D. Vretenar, D. Bazzacco, G. Bonsignori, S. Brant, S. Lunardi, M. A. Rizzutto, C. Rossi Alvarez, G. de Angelis, M. De Poli, and D. R. Napoli, "High-spin states in ¹³⁷Nd: A large variety of collective rotations," Nucl. Phys. A 617, 228 - 248 (1997).
- S. M. Mullins, A. Omar, L. Persson, D. Prévost, J. C. [77] Waddington, H. R. Andrews, G. C. Ball, A. Galindo-Uribarri, V. P. Janzen, D. C. Radford, D. Ward, T. E. Drake, D. B. Fossan, D. LaFosse, P. Vaska, M. Waring, and R. Wadsworth, "Perturbed alignments within an $i_{13/2}$ neutron intruder band in ¹⁴¹Gd," Phys. Rev. C 47, R2447–R2451 (1993).
- A. Schmidt, I. Schneider, H. Meise, I. Wiedenhöver, O. Stuch, K. Jessen, D. Weisshaar, C. Schumacher, P. von Brentano, G. Sletten, B. Herskind, M. Bergström, and J. Wrzesinski, "High Spin Structure in ¹²³Xe," Eur. Phys. J **2**, 21–23 (1998).
- Samuel M. Harris, "Higher Order Corrections to the [79]Cranking Model," Phys. Rev. 138, B509–B513 (1965).
- E. Teruya, N. Yoshinaga, K. Higashiyama, and A. Odahara, "Shell-model calculations of nuclei around mass 130," Phys. Rev. C 92, 034320 (2015).
- N = 81 isotones ¹³⁵Xe and ¹³⁷Ba," Phys. Rev. C 95, 1481 [81] Koji Higashiyama and Naotaka Yoshinaga, "Pairtruncated shell-model analysis of nuclei around mass 130," Phys. Rev. C 83, 034321 (2011).
 - B. A. Brown and W. D. M. Rae, "The Shell-Model Code NuShellX@MSU," Nucl. Data Sheets 120, 115 - 118 (2014).
 - 1487 [83] N. Shimizu, "Nuclear shell-model code for massive parallel computation, "KSHELL"," (2013), arXiv:1310.5431 [nucl-ph].
 - B. A. Brown, N. J. Stone, J. R. Stone, I. S. Towner, and M. Hjorth-Jensen, "Magnetic moments of the 2^+_1 states around ¹³²Sn," Phys. Rev. C **71**, 044317 (2005).
 - R. Machleidt, "High-precision, charge-dependent bonn nucleon-nucleon potential," Phys. Rev. C 63, 024001 (2001).
 - [86] E. Caurier, F. Nowacki, A. Poves, and K. Sieja, "Collectivity in the light xenon isotopes: A shell model study," Phys. Rev. C 82, 064304 (2010).
 - [87]E. Caurier, F. Nowacki, and A. Poves, "Shell model description of the $\beta\beta$ decay of ¹³⁶Xe," Phys. Lett. B **711**, 62 - 64 (2012).
 - L. Coraggio, L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, "Calculation of gamow-teller and two-neutrino double- $\dot{\beta}$ decay properties for ¹³⁰Te and ¹³⁶Xe with a realistic nucleon-nucleon potential," Phys. Rev. C 95, 064324 (2017).
 - [89] Chong Qi, "Shell-model configuration-interaction description of quadrupole collectivity in te isotopes," Phys. Rev. C 94, 034310 (2016).
 - Chong Qi and Z. X. Xu, "Monopole-optimized effective [90] interaction for tin isotopes," Phys. Rev. C 86, 044323 (2012).
 - J. Gizon, A. Gizon, and D. J. Horen, "Band structure in [91]^{131,132,133}Ba observed by (¹²C,xn) reactions," Nucl. Phys. A 252, 509 – 523 (1975).
 - A. Zemel, C. Broude, E. Dafni, A. Gelberg, M. B. Gold-[92]berg, J. Gerber, G. J. Kumbartzki, and K. H. Speidel, "Magnetic moment of the $19/2^+$ isomer in ¹³⁵ce," Z. Phys. A – Atoms and Nuclei **304**, 269–272 (1982).

- 1520 [93] C. T. Zhang, M. Sferrazza, R. H. Mayer, Z. W. 1527
- Grabowski, P. Bhattacharyya, P. J. Daly, R. Broda, 1528 [95] T. Lönnroth, J. Hattula, H. Helppi, S. Juutinen,
- 1522 B. Fornal, W. Królas, T. Pawłat, G. de Angelis, D. Baz-1529
- 1523
 zacco, S. Lunardi, and C. Rossi-Alvarez, "Yrast excita- 1530

 1524
 tions in ¹²⁹Te," Z. Phys. A 353, 11–12 (1995).
 1531
- tions in ¹²⁹Te," Z. Phys. A **353**, 11–12 (1995). 1531 1525 [94] A. Dewald, "Transition probabilities in transitional nuclei 1532
- in the A=130 region," Prog. Part. Nucl. Phys. 28, 409 1533

418 (1992).

- [05] T. Lönnroth, J. Hattula, H. Helppi, S. Juutinen, K. Honkanen, and A. Kerek, "Study of band crossings in ¹³⁰Xe," Nucl. Phys. A **431**, 256 – 268 (1984).
- 1531 [96] Shi Zhu-yi, Liu Yong, and Sang Jian-ping, "The nuclear structure and backbending phenomenon for ¹¹⁴⁻¹³⁰Xe isotopes," Chinese Phys. 10, 282 (2001).