Abstract

Proton-γ\gamma coincidences from (d,p)(\mathrm{d},\mathrm{p}) reactions between a 66Ni^{66}\mathrm{Ni} beam and a deuterated polyethylene target have been analyzed with the inverse Oslo method to find the nuclear level density (NLD) and γ\gamma-ray strength function (γ\gammaSF) of 67Ni^{67}\mathrm{Ni}. The 66Ni(n,γ)^{66}\mathrm{Ni}(\mathrm{n},\gamma) capture cross section has been calculated using the Hauser-Feshbach model in TALYS using the measured NLD and γ\gammaSF as constraints. We confirm that 66Ni(n,γ)^{66}\mathrm{Ni}(\mathrm{n},\gamma) acts as a bottleneck when relying on one-zone nucleosynthesis calculations. However, we find that the impact of this reaction is strongly damped in multi-zone low-metallicity AGB stellar models experiencing i-process nucleosynthesis.Comment: Submitted to Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions