66 research outputs found

    In defense of Max Planck [Letters to the editor]

    Get PDF

    CDK2 regulates nuclear envelope protein dynamics and telomere attachment in mouse meiotic prophase

    Full text link
    In most organisms, telomeres attach to the nuclear envelope at the onset of meiosis to promote the crucial processes of pairing, recombination and synapsis during prophase I. This attachment of meiotic telomeres is mediated by the specific distribution of several nuclear envelope components that interact with the attachment plates of the synaptonemal complex. We have determined by immunofluorescence and electron microscopy that the ablation of the kinase CDK2 alters the nuclear envelope in mouse spermatocytes, and that the proteins SUN1, KASH5 (also known as CCDC155) and lamin C2 show an abnormal cap-like distribution facing the centrosome. Strikingly, some telomeres are not attached to the nuclear envelope but remain at the nuclear interior where they are associated with SUN1 and with nuclear-envelope-detached vesicles. We also demonstrate that mouse testis CDK2 phosphorylates SUN1 in vitro. We propose that during mammalian prophase I the kinase CDK2 is a key factor governing the structure of the nuclear envelope and the telomere-led chromosome movements essential for homolog pairin

    Mammalian Sperm Head Formation Involves Different Polarization of Two Novel LINC Complexes

    Get PDF
    Background: LINC complexes are nuclear envelope bridging protein structures formed by interaction of SUN and KASH proteins. They physically connect the nucleus with the peripheral cytoskeleton and are critically involved in a variety of dynamic processes, such as nuclear anchorage, movement and positioning and meiotic chromosome dynamics. Moreover, they are shown to be essential for maintaining nuclear shape. Findings: Based on detailed expression analysis and biochemical approaches, we show here that during mouse sperm development, a terminal cell differentiation process characterized by profound morphogenic restructuring, two novel distinctive LINC complexes are established. They consist either of spermiogenesis-specific Sun3 and Nesprin1 or Sun1g, a novel non-nuclear Sun1 isoform, and Nesprin3. We could find that these two LINC complexes specifically polarize to opposite spermatid poles likely linking to sperm-specific cytoskeletal structures. Although, as shown in co-transfection/ immunoprecipitation experiments, SUN proteins appear to arbitrarily interact with various KASH partners, our study demonstrates that they actually are able to confine their binding to form distinct LINC complexes. Conclusions: Formation of the mammalian sperm head involves assembly and different polarization of two novel spermiogenesis-specific LINC complexes. Together, our findings suggest that theses LINC complexes connect the differentiating spermatid nucleus to surrounding cytoskeletal structures to enable its well-directed shaping and elongation

    Engaging the Public with CCUS: Reflection on a European Project Approach

    Get PDF
    The aim of this paper is to share our approach for a societal engagement and participation process that is implemented as part of two sequential research projects on CCUS. The two projects are both funded under the European Union’s (EU) Horizon 2020 research program. The first one, STRATEGY CCUS (2019-2022), develops strategic development plans for eight regions in South-East Europe; the second, Pilot STRATEGY (2021-2026), partly builds on the first project; Pilot STRATEGY aims at enabling three of the eight regions to start developing their storage resources concretely and to support two further regions in continuing to explore CCUS as an option. Both projects were designed in a way that they integrate geological, technical and economic research with social sciences, with a focus on the regional level. The paper provides an overview on the concept, objectives and the methodologies for the engagement process. It further includes reflections identifying room for improvement and provides recommendations for other projects. Overall, we find that the situation is characterized by low levels of awareness regarding CCUS, but some openness to discuss it. Specific expectations vary and the societal view is not always in line with the current scientific knowledge and the technological development. Important recommendations include building strong interdisciplinary teams that also implement processes for self-reflection.info:eu-repo/semantics/publishedVersio

    Low and High Expressing Alleles of the LMNA Gene: Implications for Laminopathy Disease Development

    Get PDF
    Today, there are at least a dozen different genetic disorders caused by mutations within the LMNA gene, and collectively, they are named laminopathies. Interestingly, the same mutation can cause phenotypes with different severities or even different disorders and might, in some cases, be asymptomatic. We hypothesized that one possible contributing mechanism for this phenotypic variability could be the existence of high and low expressing alleles in the LMNA locus. To investigate this hypothesis, we developed an allele-specific absolute quantification method for lamin A and lamin C transcripts using the polymorphic rs4641C/T LMNA coding SNP. The contribution of each allele to the total transcript level was investigated in nine informative human primary dermal fibroblast cultures from Hutchinson-Gilford progeria syndrome (HGPS) and unaffected controls. Our results show differential expression of the two alleles. The C allele is more frequently expressed and accounts for ∌70% of the lamin A and lamin C transcripts. Analysis of samples from six patients with Hutchinson-Gilford progeria syndrome showed that the c.1824C>T, p.G608G mutation is located in both the C and the T allele, which might account for the variability in phenotype seen among HGPS patients. Our method should be useful for further studies of human samples with mutations in the LMNA gene and to increase the understanding of the link between genotype and phenotype in laminopathies

    A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility

    Get PDF
    The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE–specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE–specific proteins, which in turn would promote synapsis between homologous chromosomes

    A transcriptome analysis of mitten crab testes (Eriocheir sinensis)

    Get PDF
    The identification of expressed genes involved in sexual precocity of the mitten crab (Eriocheir sinensis) is critical for a better understanding of its reproductive development. To this end, we constructed a cDNA library from the rapid developmental stage of testis of E. sinensis and sequenced 3,388 randomly picked clones. After processing, 2,990 high-quality expressed sequence tags (ESTs) were clustered into 2,415 unigenes including 307 contigs and 2,108 singlets, which were then compared to the NCBI non-redundant (nr) protein and nucleotide (nt) database for annotation with Blastx and Blastn, respectively. After further analysis, 922 unigenes were obtained with concrete annotations and 30 unigenes were found to have functions possibly related to the process of reproduction in male crabs – six transcripts relevant to spermatogenesis (especially Cyclin K and RecA homolog DMC1), two transcripts involved in nuclear protein transformation, two heat-shock protein genes, eleven transcription factor genes (a series of zinc-finger proteins), and nine cytoskeleton protein-related genes. Our results, besides providing valuable information related to crustacean reproduction, can also serve as a base for future studies of reproductive and developmental biology

    Embryonic and adult isoforms of XLAP2 form microdomains associated with chromatin and the nuclear envelope

    Get PDF
    Laminin-associated polypeptide 2 (LAP2) proteins are alternatively spliced products of a single gene; they belong to the LEM domain family and, in mammals, locate to the nuclear envelope (NE) and nuclear lamina. Isoforms lacking the transmembrane domain also locate to the nucleoplasm. We used new specific antibodies against the N-terminal domain of Xenopus LAP2 to perform immunoprecipitation, identification and localization studies during Xenopus development. By immunoprecipitation and mass spectrometry (LC/MS/MS), we identified the embryonic isoform XLAP2Îł, which was downregulated during development similarly to XLAP2ω. Embryonic isoforms XLAP2ω and XLAP2Îł were located in close association with chromatin up to the blastula stage. Later in development, both embryonic isoforms and the adult isoform XLAP2ÎČ were localized in a similar way at the NE. All isoforms colocalized with lamin B2/B3 during development, whereas XLAP2ÎČ was colocalized with lamin B2 and apparently with the F/G repeat nucleoporins throughout the cell cycle in adult tissues and culture cells. XLAP2ÎČ was localized in clusters on chromatin, both at the NE and inside the nucleus. Embryonic isoforms were also localized in clusters at the NE of oocytes. Our results suggest that XLAP2 isoforms participate in the maintenance and anchoring of chromatin domains to the NE and in the formation of lamin B microdomains

    Functional impairment of systemic scleroderma patients with digital ulcerations: Results from the DUO registry

    Get PDF

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies
    • 

    corecore