7 research outputs found

    Stokes operators, angular momentum and radiation phase

    Get PDF

    How to Maximize the Capacity of General Quantum Noisy Channels

    Full text link
    A general quantum noisy channel is analyzed, wherein the transmitted qubits may experience symmetry-breaking decoherence, along with memory effects. We find the optimal basis not to be fully entangled, but a combination of factorized and partially-entangled states in the presence of memory, asymmetry and the state-bias of the noise. Capacity-maximization is shown to be achievable by combining temporal shaping of the transmitted qubits and optimal basis selection.Comment: 4 pages, 3 figure

    Electromagnetic induced transparency and slow light in interacting quantum degenerate atomic gases

    Full text link
    We systematically develop the full quantum theory for the electromagnetic induced transparency (EIT) and slow light properties in ultracold Bose and Fermi gases. It shows a very different property from the classical theory which assumes frozen atomic motion. For example, the speed of light inside the atomic gases can be changed dramatically near the Bose-Einstein condensation temperature, while the presence of the Fermi sea can destroy the EIT effect even at zero temperature. From experimental point of view, such quantum EIT property is mostly manifested in the counter-propagating excitation schemes in either the low-lying Rydberg transition with a narrow line width or in the D2 transitions with a very weak coupling field. We further investigate the interaction effects on the EIT for a weakly interacting Bose-Einstein condensate, showing an inhomogeneous broadening of the EIT profile and nontrivial change of the light speed due to the quantum many-body effects beyond mean field energy shifts.Comment: 7 figure

    Collisionally inhomogeneous Bose-Einstein condensates in double-well potentials

    Get PDF
    In this work, we consider quasi-one-dimensional Bose-Einstein condensates (BECs), with spatially varying collisional interactions, trapped in double well potentials. In particular, we study a setup in which such a 'collisionally inhomogeneous' BEC has the same (attractive-attractive or repulsive-repulsive) or different (attractive-repulsive) type of interparticle interactions. Our analysis is based on the continuation of the symmetric ground state and anti-symmetric first excited state of the noninteracting (linear) limit into their nonlinear counterparts. The collisional inhomogeneity produces a saddle-node bifurcation scenario between two additional solution branches; as the inhomogeneity becomes stronger, the turning point of the saddle-node tends to infinity and eventually only the two original branches remain present, which is completely different from the standard double-well phenomenology. Finally, one of these branches changes its monotonicity as a function of the chemical potential, a feature especially prominent, when the sign of the nonlinearity changes between the two wells. Our theoretical predictions, are in excellent agreement with the numerical results.Comment: 14 pages, 12 figures, Physica D, in pres

    TheqQuantum acousto optic effect in Bose-Einstein condensate

    Full text link
    We investigate the interaction between a single mode light field and an elongated cigar shaped Bose-Einstein condensate (BEC), subject to a temporal modulation of the trap frequency in the tight confinement direction. Under appropriate conditions, the longitudinal sound like waves (Faraday waves) in the direction of weak confinement acts as a dynamic diffraction grating for the incident light field analogous to the acousto-optic effect in classical optics. The change in the refractive index due to the periodic modulation of the BEC density is responsible for the acousto-optic effect. The dynamics is characterised by Bragg scattering of light fom the matter wave Faraday grating and simultaneous Bragg scattering of the condensate atoms from the optical grating formed due to the interference between the incident light and the diffracted light fields. Varying the intensity of the incident laser beam we observe the transition from the acousto-optic effect regime to the atomic Bragg scattering regime, where Rabi oscillations between two momentum levels of the atoms are observed. We show that the acousto-optic effect is reduced as the atomic interaction is increased
    corecore