We systematically develop the full quantum theory for the electromagnetic
induced transparency (EIT) and slow light properties in ultracold Bose and
Fermi gases. It shows a very different property from the classical theory which
assumes frozen atomic motion. For example, the speed of light inside the atomic
gases can be changed dramatically near the Bose-Einstein condensation
temperature, while the presence of the Fermi sea can destroy the EIT effect
even at zero temperature. From experimental point of view, such quantum EIT
property is mostly manifested in the counter-propagating excitation schemes in
either the low-lying Rydberg transition with a narrow line width or in the D2
transitions with a very weak coupling field. We further investigate the
interaction effects on the EIT for a weakly interacting Bose-Einstein
condensate, showing an inhomogeneous broadening of the EIT profile and
nontrivial change of the light speed due to the quantum many-body effects
beyond mean field energy shifts.Comment: 7 figure