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Abstract. We present a development of a method determining the quantum 
phase of radiation via the conservation of the angular momentum. It is shown 
that a set of generalized Stokes operators can be obtained with the aid of 
integrals of motion and two of them determine the radiation cosine and sine of 
the phase which corresponds to the azimuthal phase of the angular momentum 
according to the construction. We compare the evolution of the radiation cosine 
and sine and that for the conventional phase difference in the Jaynes-Cum- 
mings model. Although the expectation values coincide in some important 
cases, there is a striking difference between the behaviours of variances. 

1. Introduction 
In this paper we discuss the approach to quantum phase of light which has been 

proposed recently in [l]. We extend this approach to obtain the generalized Stokes 
operators of an electric dipole radiation. These operators correspond to the polar 
decomposition of two dual representations of the angular momentum [2]. T w o  of 
them can be interpreted as the Hermitian cosine and sine operators, corresponding 
to the azimuthal phase of the angular momentum. We compare our method with 
the classical description of the phase difference between the modes with different 
polarization and with some known approaches to quantum phase. 

T h e  problem of quantum phase has been widely studied in quantum optics 
(see, for recent reviews, [3-51). One of the most important and popular methods in 
this field has been proposed by Pegg and Barnett [6-81. They get over the 
difficulties connected with the definition of the Hermitian phase operator by 
introduction of a state space of formally finite dimension in the infinite Hilbert 
space. T h e  infinite-dimension limit is taken only after the expectation values have 
been calculated. Within the framework of this approach, a number of interesting 
and important results have been obtained. 

Another important way to describe the quantum phase properties of light is to 
examine what can be measured in a real experiment [9-111 (see also [12]). T h e  
cosine and sine of the phase operators identified in this approach correspond to the 
measured functions of the phase difference between two fields which can be 
considered as the modes with different polarizations [13]. These operational cosine 
and sine values should correspond to a unique intrinsic quantum-dynamical 
variable responsible for the phase properties of light [14]. T h e  results of the 
operational approach [9-113 can be interpreted within the method based on the 
integration of the quasiprobability distribution function over the radial [15-191. 
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D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
5:

53
 2

7 
O

ct
ob

er
 2

01
7 



620 A. S. Shumovsky and 0. E.  Mustecaplaoijlu 

Exactly, the phase distribution measured by a homodyne detector is the radius- 
integrated Q function. 

The  approach has been proposed in [l] is complementary, in some sense, to the 
operational definition of the phase. I t  is based on a simple idea that the phase 
properties first are obtained by light in the process of generation and only then are 
measured in some way. This idea permits us to determine the quantum phase of 
radiation via the conservation laws, corresponding to the process of generation. 
Precisely, the conservation of the angular momentum should be examined because 
two other conserved quantities (energy and momentum) do not have non-trivial 
angular dependence. 

The attempts to determine the phase as a quantum variable canonically 
conjugated with the angular momentum are well known (for example [20-231). 
The new element is that we determine the quantum phase of radiation v ia  the angular 
momentum of the source. In fact, the photon generated by an atomic transition takes 
away the angular momentum of this transition. The phase properties of the atomic 
transition moment can be easily determined by the polar decomposition [24] which 
is always possible in the finite dimensional space of the atomic states. At the same 
time, the S U ( 2 )  subalgebra in the Weyl-Heisenberg algebra, describing the 
angular momentum of the radiation field, does not have a uniquely determined 
polar decomposition in the whole Hilbert space. Therefore, we determine the 
cosine and sine operators of the ‘radiation phase’ as the complements of corre- 
sponding atomic cosine and sine operators with respect to the integrals of motion, 
describing the conservation of total angular momentum [l]. 

It is well known from the quantum electrodynamics that the angular momen- 
tum (spin) of a photon determines its polarization [25]. In fact, radiation with 
given polarization is considered as a beam of photons with one and the same spin 
state. In classical optics, the polarization of light is specified by the Stokes 
parameters, which are usually considered for the two-mode field either in the 
linear polarization basis or in the circular polarization basis [26]. In the set of four 
Stokes parameters for the two-mode field, two of them determine the classical 
cosine and sine of the phase difference between the modes. The  quantum 
conterpart of the Stokes parameters is provided by the Hermitian Stokes operators 
[27]. Recently the polar decomposition of the Stokes operators of the two-mode 
field has been examined [28-301. In this approach, the Hermitian phase operator, 
describing the phase difference between two circularly polarized modes, is con- 
structed under some special condition which is, in fact, equivalent to the 
consideration of a finite subspace of the Hilbert space with successive limit 
transition in the spirit of the Pegg-Barnett prescription. This phase-difference 
operator does not coincide with the difference between two Pegg-Barnett operators 
[30]. Let us stress that the consideration of more than one mode is important 
because the absolute phase of a single mode is not accessible for a measurement 

Since the minimum value of the angular momentum, which can be transmitted 
from the atomic transition to a photon, is equal to unity, let us consider, for 
simplicity, the electric dipole radiation. It is well known from the classical 
electrodynamics that, in this case, the magnetic field is always orthogonal to the 
direction of propagation while the electric field can have a component along the 
direction of propagation (at least, in the near zone) [31]. In the quantum domain, 
this radiation is described by the photons with given angular momentumj = 1 and 

[lo]. 
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Stokes operators, angular momentum and radiation phase 621 

projection m = 0 , k l  or, in other words, by the spherical photons [32]. Naturally, 
all three permissible projections, corresponding to the circularly polarized com- 
ponents with the opposite helicities and one linearly polarized component, should 
be taken into consideration. Although the intensity of the linearly polarized 
component with m = 0 is extremely small in the far zone, it is not surprising 
that it must be taken into account in the quantum domain. Even if this component 
is supposed to be in the vacuum state, it can contribute to the quantum fluctua- 
tions. Corresponding classical polarization properties are described by the 3 x 3 
tensor of polarization. Since the number of independent parameters is equal to five 
in this case (the intensities of three components with different m and the phase 
differences Amml such that d+o + do- + A - 0  = 0), the set of the generalized Stokes 
parameters should consist of five independent parameters. Thus,  in the quantum 
domain, we have to consider five generalized Stokes operators. 

Below in this paper we show how the generalized Stokes operators can be 
determined via the conservation of the angular momentum in an atom-field 
interaction. In this way, we determine the quantum phase properties of the electric 
dipole radiation in terms of the Hermitian cosine and sine operators. According to 
the construction, these operators describe the azimuthal phase of the angular 
momentum. Under some special conditions, this phase could coincide with the 
phase difference between two components of the electric dipole radiation. We 
compare our results with that obtained within some known approaches. 

2. Phase properties of classical electric dipole radiation 
The Stokes parameters of classical electromagnetic field determine the relative 

phases of two components with different polarization [26]. In the circular 
polarization basis, the definitions are 

2 2 
SO = I E + * E ~  + ( E - * E ~  , 
SI = 2Re[ (~+*E)*( r -*E) l ,  

s2 = 2 Im [(E+-E)*(C-*E)] ,  
2 2 

~3 = I E + * E ~  - IE- 'E~ , 

where E is the field and E is the unit vector of polarization. Thus,  the parameters sl 
and s2 determine cosine and sine of the phase difference between two circularly 
polarized components. 

In view of our aim, let us consider the multipole expansion of the field provided 
by the expression [31] 

where E~j,(k) = ikAA,,(k), the index X = E , M  shows the type of the multipole 
field and 

aAjtn (k) 3 / r2 dr  dS2 Eljrn (k) * E. 

Here the coefficients AAjrn(k) are defined by the standard combinations of vector 
spherical harmonics and Bessel functions (for example [31, 321). Since the 
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622 A. S. Shumovsky and 0. E. Miistecaplaoijlu 

standard Stokes parameters (1) are determined by a quadratic function of the 
field which does not contain the rapidly oscillating terms [26], let us consider the 
form 

where the vector E is written in the 'phasor' form, dropping the conjugated part. 
Since we are primarily interested in the electric dipole radiation, we may restrict 
our consideration by the case of X = E,j  = 1 and m = 0, f l .  Then the modes 
m = f l  describe two circularly polarized components with the opposite helicities 
and m = 0 corresponds to a linearly polarized mode which always exists in the 
classical dipole radiation. The  3 x 3 Hermitian matrix (3) can be represented as 

p =  N + A  + A + ,  

where the elements of the diagonal matrix N clearly are the intensities of modes 
with different m. The elements of the triangular matrix A are such that 

Re (Amv)  0; cos A,,, Im (A,,) - sin A,, 

where A,, arg (E i *E)  - arg (Ei-E)*. It should be stressed that, unlike the case of 
standard Stokes parameters ( l ) ,  there are three phase differences A,,, only two of 
which are independent because of the equality A+- = A+,)  - A - 0 .  T o  specify the 
components of N ,  let us introduce the following combinations: 

It is clear that, when the intensity of the linearly polarized component vanishes, 
the parameters S3 and S4, apart from the constant multipliers, are just the Stokes 
parameters SO and s3 respectively in equation (1). The  reason to choose the constant 
factors will be clarified in section 4. Two more relations, specifying the compo- 
nents of A and determining the possible phase difference, can be chosen as 
follows: 

Sl = Re [(E;.E)*(EG.E) + (EG.E)*(E'.E) + (E'.E)*(E;*E)], 

Sz = Im [(E*,-E)*(EG.E) + (E;*E)*(E'-E) + (E'.E)*(E;.E)]. 
(5 )  

It is clear that 2S1 = sl and 2S2 = s2 when the linearly polarized component 
vanishes. Thus,  the set of four parameters (4), (5) can be considered as some 
generalization of (1) in the case of the electric dipole radiation. I t  should be 
emphasized that the total set of the Stokes parameters, describing polarization 
properties of electric dipole radiation, should consist of five parameters. The  
additional parameter can be specified as T r N .  The  quantum counterpart of the 
parameters (4), (5) can be obtained by substitution of the operators of spherical 
photons into equations (2) and (3) instead of the complex amplitudes a, in a 
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Stokes operators, angular momentum and radiation phase 623 

standard way [32, 331. Then we get the generalized Stokes operators 

m=- 1 

3112 + + 
S4 = - (a -a -  - .+a+). 2 

Clearly, these are Hermitian operators such that 

P I  > s 2 1  = [Sl I sol = [S2, S o ]  = [S3, So] = [ S 4 ,  So] = 0. (7) 
Let us also note that, unlike the standard Stokes parameters sl and s2 in equation 
( l) ,  the parameters S, and Sz in equation (5)  do not have the simple meaning of the 
cosine and sine of a phase difference. However, as we are going to see, they 
correspond to the cosine and sine of some quantum phase variable. 

3. Polar decomposition of the angular momentum 
The angular momentum of the electric dipole radiation is determined by the 

operators [32] 
+ I  

M ,  = C maia,,  M+ = 2 112 (a+ao + + a ia -1 ,  M -  = 2 112 (ao + a+ + aTao), (8) 
m = - l  

forming a representation of the S U ( 2 )  subalgebra in the Weyl-Heisenberg 
algebra. One can expect to determine the quantum phase properties of the angular 
momentum through the use of the polar decomposition 

M+ = ( M + M - ) ' ~ ~  exp (9) 
similar to that proposed by Dirac [34]. Unfortunately, the exponential of the phase 
operator in equation (9) cannot be uniquely determined as a unitary operator in the 
whole Hilbert space. The  reason is that the subalgebra (8) does not contain a 
uniquely determined scalar (the Casimir operator) in the enveloping algebra. 
Therefore, in the spirit of the philosophy of [l], we determine this polar decom- 
position via the conservation of the angular momentum in the atom-field inter- 
action. Consider for simplicity the Jaynes-Cummings model describing the 
electric dipole radiation in a spherical box of volume V (see [35] and references 
therein) 

Here D is the effective dipole factor, R,, are the atomic operators describing the 
transitions between the excited sublevelsj = 1; m = 0, f l  and ground level G with 
jc; = 0; m c  = 0. Then the generators of the S U ( 2 )  algebra, specifying the atomic 
angular momentum j = 1 ,  are expressed in terms of the atomic operators as 
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624 A. S. Shumovsky and 0. E.  Mustecaplzoglu 

follows: 

It is not hard to see that the operators J, + M ,  commute with the Hamiltonian 
(lo), owing to conservation of the total angular momentum. Since the enveloping 
algebra of equation (1 1) contains the Casimir operator J2 = 2 x 1 = 2 Ern R,,, the 
polar decomposition of the form (9) can be determined [24] b y  choosing the 
exponential of the phase operator and corresponding sine and cosine operators as 
follows: 

E + E +  , CA=- 
E - E+ 

S A  = - 
2i 2 

Clearly, SA and CA are the Hermitian commuting operators such that Si+ 
C i  = 1. They are determined in terms of the atomic operators in the basis formed 
by the states Ij = 1; m = 0,  f 1). It is easily seen that, because of the conservation 
laws [SA + S2, H ]  = 0,  one can interpret the operators CR = S1 and SR = S2 as the 
radiation counterparts of CA and SA. 

In addition to the above basis of the atomic states, one can choose the 
orthogonal states l q m ) ,  qm = 2mn/3 such that €l iprn)  = exp (icp,) Icp,). Employing 
these states then gives the dual representation of the algebra (11) [24]: 

By performing a polar decomposition of this algebra, one can obtain the atomic 
‘sine’ and ‘cosine’ operators in the @ representation [2]: 

which clearly are the atomic counterparts of the generalized Stokes operators S3 
and S1 respectively, because [SAQ + S3, H ]  = [ C A ~  + S1 , H ]  = 0. In addition, 
[So,J2] = 0. Thus, the use of the polar decomposition of the atomic angular 
momentum and conservation of the total angular momentum in the system 
‘atom + radiation’ leads to the direct definition of the generalized Stokes operators 
(6). 

4. Radiation sine and cosine of the phase operators 
Since the operators S1 and S2 in equation (6) are the counterparts of the atomic 

operators CA and SA, one can choose to interpret them as the cosine and sine of the 
azimuthal phase of the radiation angular momentum. Below they will be termed 
the radiation cosine and sine respectively. In this case, they must be normalized in 
some way to have the expectation values between -1 and +l. A convenient form of 
the radiation cosine and sine operators is afforded by taking [l] 

CR = KS1, SR = KS2, (12) 

and requiring that K is the real normalization factor. In the case of the Jaynes- 
Cummings model (lo), K = 1 owing to the conservation laws. However, if we 
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Stokes operators, angular momentum and radiation phase 625 

examine an unspecified source of the electric dipole radiation, K should be 
considered as a function of intensities [2]. I t  seems to be quite natural to determine 
K in this case by the condition 

(C:, + s;) = 1, (13) 

which, in view of equations (6) and (12) can be put in the form 

K = [I+ + I0 + I- + I+l0 + IoZ- + I+I- 
(14) 

2 + (aT2aoa- + ai2a+a- + aT2a+a0 + hc)] , 

where I,, = (ata,,). Let us stress that, if we try to determine the classical cosine 
and sine 

through the use of equations (S), we get the constant K, coinciding with equation 
(14) to within the linear term c ,  I,,,. This term follows from the commutation 
relations for the photon operators and is negligible in the classical limit. 

It is not hard to see that the definitions (12) and (13) of the cosine and sine 
operators are consistent with the principle of uniform phase distribution in the 
number and vacuum states [2]. Moreover, (CR) = (SR) = 0 and corresponding 
variances are equal to 3 if only two modes out of three are in the number state. 
When all three modes are in the coherent states, the definitions (12) and (13) lead 
to the standard classical limit. 

5. Radiation phase and conventional phase difference 
Although the operators Sl and S2 in equation (6) or CR and SR in equation (1 2) 

describe the azimuthal phase of the angular momentum, in a special case when one 
of the modes of radiation is in the vacuum state, they formally correspond to the 
phase difference between two other modes. To make a simple comparison with the 
conventional definition of the phase difference, let us consider the evolutions 
described by the Jaynes-Cummings model (10). With the assumption that the 
atom is prepared initially in the superposition of two sublevels of the excited level 
( p + l j = l ; m = + l ) + p - I j = l ; m = - l ) , l p + l  +Ipl  = 1  while the field is in the 
vacuum state, the time-dependent wavefunction can be written as 

2 2 

lY( t ) )  =cos (g t ) (p+ l j=  1 ; m = + 1 )  + p - J j =  l ; m =  -1))10,0,0) 

+ sin (gt) I j = 0; m = O)(p+Il, 0,O) + p - I O , O ,  1)). (15) 

In this case, only two circularly polarized components with the opposite helicities 
can be emitted or absorbed while the linearly polarized component is kept in the 
vacuum state. Averaging the operators (6) with respect to the wavefunction (14) 
and taking into account the definition (12), we get 

(Cn) = Ip+p- I cos A sin2 (gt), (Sn)  = Ip+p- I sin A sin2 (gt), (16) 

where A argp, - argp-. Thus, the expectation values of the 'radiation' cosine 
and sine (1 2) can be interpreted, in the case under consideration, as the cosine and 
sine of the phase difference between two circularly polarized components. In  other 
words, the averages (16) have the meaning of the Stokes parameters sl and s2 in 
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626 A. S.  Shumovsky and 0. E. Miistecaplzoijlu 

equation (1). The phase difference here is completely determined by the choice of 
the initial atomic state. For the variances we get 

v(cR) = [$(I + Ip+p-l cosd) - lp+p412 cos2 dsin2 (gt)] sin2 (gt), 

v(sR) = [f (1 - I p+p- I cos A )  - I p +p- l 2  sin2 A sin2 (gt) sin2 (gt). 
(17) 

Let us stress that, although the linearly polarized component is in the vacuum 
state, the terms with a0 and 4; in CR and SR contribute to the variances (17). It 
seems to be natural because the vacuum fluctuations of any mode m of the cavity 
field cannot be eliminated. 

Consider now th Pegg-Barnett phase difference determined for the modes with 
the opposite helicities in the system (10). The  phase sums and differences have 
been determined in [36]. In this formalism, the phase properties of a two-mode 
field are simply constructed from the single-mode phase. However, the direct use 
of the individual phase definition [6-81 leads to the values of the phase difference, 
covering the 471 range, and the phase difference should be cast into the 2x range 
[36]. It was emphasized in [36] that there are many ways to apply the casting 
procedure. Below we use this procedure in the form proposed in [28, 371. The  
relation between this casting procedure and that by Barnett and Pegg [36] has been 
discussed in [S, 28, 371. Then, the phase distribution over the relative phase $ = 
$+ - 4- in the range 2~ is 

n=O 

Then, the expectation 
follows: 

Inserting the function 

value of any function of the relative phase is determined as 

(cos @ p ~ )  = Ip+p- I cos A sin2 (gt), (sin @ p ~ )  = Ip+p- 1 sin A sin2 (gt) ( 1  9) 
Thus, for the system with Hamiltonian (lo), the expectation values of the 
'radiation' cosine and sine have the same values at all times as the corresponding 
Pegg-Barnett expressions. In turn, the variances are 

2 V(cos @pB) = (f - Ip+p-I cos2 6 sin2 ( g t ) ]  sin2 ( g t ) ,  

V(sin @pB) = 1 - (f + Ip+p- I sin2 6 sin2 (gt)] sin2 (gt). 

Unlike the average cosine and sine, the variances (17) and (20) are different 
although 

v(cR) + v(sR) = ~ ( c o s  @pB + V(sin @pB) = I - 1p+p-1~ sin4 (gt). 

2 (20) 

This difference arises for the following reason. In the Pegg-Barnett approach, the 
cosine and sine (19) are determined in terms of the phase difference between two 
modes. Although the third mode could be included in the definition of the phase 
distribution function (1 8), it does not contribute to the quantum fluctuations. On 
the contrary, the radiation cosine and sine (12) describe the quantum phase 
properties of the angular momentum (spin) of a photon. They formally coincide 
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Stokes operators, angular momentum and radiation phase 627 

with those, determined in the Pegg-Barnett approach, only in the case when the 
third mode is in the vacuum state. At the same time, they describe a different 
physical variable and take into account the vacuum fluctuations of all modes of the 
cavity field. Let us also note that, constructing the Stokes operators directly from 
equations (1) and using the polar decomposition in the spirit of [26-281, one can 
determine some other cosine and sine operators. These operators also determine 
the phase difference between two circularly polarized modes and formally differ 
from the objects of the Pegg-Barnett approach. Nevertheless, they also do not take 
into account of the vacuum fluctuations of the complete cavity field. 

6. Conclusions 
In this paper we have concentrated on the description of the quantum phase 

properties of radiation via the conservation of the angular momentum in the atom- 
field system. This way permits us to avoid the difficulties related to the polar 
decompositions in the whole Hilbert space of the photon states. The  ‘radiation 
phase’ determined in this way in the Jaynes-Cummings model (10) is the 
azimuthal phase of the photon spin. It is shown that the use of the angular 
momentum conservation leads to the definition of the set of generalized Stokes 
operators equivalent to that obtained via the standard consideration of the classical 
polarization tensor with the consequent quantization. This set ( 6 )  completely 
determines the quantum polarization properties of the electric dipole radiation. 

It follows from the results of section 3 that the atomic phase operator can be 
directly determined as follows: 

Then, the radiation counterpart clearly is @R = (4n/31/2)S2. Although for the 
atomic subsystem 

SA = sin @A, CA = cos @A, 

similar equalities do not occur in the radiation subsystem. Since the operators S1 

and S 2  (equation ( 6 ) )  and CR and SR (equation (12 ) )  have quite natural physical 
meaning, it seems to be unreasonable to consider @R as the radiation phase. 

Let us emphasize the principal difference between our approach and those 
based on the consideration of a phase operator for a one-mode field or phase- 
difference operators for two modes. The  quantum phase properties, determined by 
the operators ( 6 ) ,  are the intrinsic properties of a photon, related to its spin 
(generally, to its angular momentum). In the multiphoton case, they are deter- 
mined by the mutual phase properties of all three allowed modes of radiation 
rather than the single-mode phase or the two-mode phase difference. In the special 
case of only two modes having non-zero intensities, the operators (12 )  determine 
the cosine and sine of the phase difference but only formally. In this case, the 
expectation values of (1 2)  coincide with the standard mean cosine and sine of the 
phase difference between two modes. At the same time, the variance of cosine and 
sine are different because they correspond to different physical objects. 

Since the radiation cosine and sine (12) commute with each other and with the 
total photon number, all of them can be measured at once. Since the polarization 
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628 Stokes operators, angular momentum and radiation phase 

properties of radiation can be directly measured, the generalized Stokes para- 
meters, which are the expectation values of the generalized Stokes operators, can 
be used to determine the measuring radiation phase in the operational way. In view 
of the above results, it is natural to suppose that the phase of the angular 
momentum of radiation might be considered as the intrinsic phase variable in 
the spirit of [14]. 

Although we have considered the results for the Jaynes-Cummings model (lo), 
the approach will in principle work for an arbitrary system and even for an 
arbitrary state of the field generated by an unspecified source, in which case the 
definition (1 2) must be added by the normalization condition (1 3). This  definition 
is compatible with the classical definition of the radiation cosine and sine in terms 
of the generalized Stokes parameters (6). I t  also shows the uniform quantum phase 
distribution in the vacuum and number states. 
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